Rethinking Recombination: Primordial magnetic fields and their implications for the Hubble tension

Jonathan Schiff Supervisor: Tejaswi Venumadhav Nerella

Outline

• Hubble tension basics/background • Recombination basics/background • PMFs and modified recombination schemes

Hubble Tension

• CMB measurements:

- Measure BAO angular size, θ_{s} , in CMB power spectrum
	- Compute comoving sound horizon, r_{S} , and distance to surface of last scattering, $D_s[H_0]$, which is a function of H_0 $r_{\rm s}$
	- Infer H_0 : $\theta_s \sim$ $D_S[H_0]$
		- Planck 18: $H_0 \sim (67 \pm 0.5) \frac{km}{s\ Mpc}$
		- \cdot > 5 σ tension with SH0ES collaboration

Planck Collaboration 2018

Recombination Basics

- Recombination models and codes presuppose it is a local process
	- Saha (local thermal equilibrium)
	- Peebles three level atom (3LA)
	- State of the art codes HYREC, RECFAST
- The ionization fraction in all these models and codes is determined by the local baryon density and local physics • Inhomogeneities in the baryon density locally modify the recombination rate

Three Level Atom

$\dot{x}_e = -C(n_H x_e^2 \alpha_B - 4x_{1s}\beta_B e^{-\frac{E_{21}}{k_B T}})$

Three Level Atom

$\dot{x}_e = -C \left(n_H x_e^2 \alpha_B - 4 x_{1s} \beta_B e^{-\frac{\overline{E}_{21}}{k_B T}} \right)$
 $\dot{n}_e \propto -n_e^2$

Three Level Atom

$\dot{x}_e = -C \left(n_H x_e^2 \alpha_B - 4 x_{1s} \beta_B e^{-\frac{E_{21}}{k_B T}} \right)$
 $\dot{n}_e \propto -n_e^2$
 $\langle n_e^2 \rangle \geq \langle n_e \rangle^2$

Inhomogeneities lead to an overall speedup in average rate of recombination

Inhomogeneous recombination

• Karsten Jedamzik and collaborators: PMFs can source small-scale inhomogeneities

• Assessments of proposal to date:

- Simple three-zone model of homogeneous recombination taking place in regions of
	- Overdensity, undersdensity, background density
	- Take volume weighted average of recombination in each region

Rashkovetskyi, Muñoz, Eisenstein, Dvorkin 2021

Inhomogeneous recombination

• Shortcomings of three-zone model of inhomogeneous recombination: • Does not account for spatial and temporal evolution of inhomogeneities • Ignores non-local radiative transfer on small-scales and the enterprise Rashkovetskyi, Muñoz,

Eisenstein, Dvorkin 2021

Radiative Transfer & Recombination

- On small-scales, non-local transport of diffusing radiation becomes important (Venumadhav & Hirata 2015)
- Need detailed account of non-local dynamics that govern PMF induced small-scale inhomogeneities

 δ_{+} Faster recombination

 δ Slower recombination Excess γ flux **further inhibits**

recombination

Radiative Transfer & Recombination

 ${\rm ess}$

• Solve perturbed Boltzmann equation:

• Contributions from continuum and Ly- α

channels

$$
\frac{\partial f}{\partial t} - \left[H + \frac{n_i n_j}{a} \frac{\partial v_i}{\partial x_j} \right] \nu \frac{\partial f}{\partial \nu} + \frac{c}{a} \hat{\mathbf{n}} \cdot \nabla f = \sum_{\text{process}} f|_{\text{process}}.
$$
\nVenumadhav & Hirata 2015

\n(23)

• Continuum: perturb detailed balance between absorption and emission of continuum photons

• Ly- α , 2s1s: perturb homogeneous Sobolev solution

 δ Slower recombination Excess γ flux **further inhibits recombination**

 δ

Faster recombination

Radiative Transfer & Recombination

• Solve perturbed Boltzmann equation:

• Contributions from continuum and Ly- α , 2s1s channels

 δ Faster recombination

 $\delta\dot{x}_{e}^{\,} \big|$ ϵ ont $+ \delta \dot{x}_e$ $Lya, 2s1s$ $\sim A\delta x_e + B\delta_m + C(k\cdot \vec{v})$

> δ Slower recombination Excess γ flux **further inhibits recombination**

Numerical evolution scheme

- Magnetogenesis at some very redshift z_0 with power spectrum $P_B(k, z_o)$
	- Potential sources:
		- Inflation, electroweak phase transition, etc.
- Magnetic field couples to velocity and energy density fields via Maxwell/Fluid equations (ideal MHD) • Linear perturbation theory through several different regimes

- MHD contribution in Euler equation is non-linear:
- Non-Relativistic Euler equation:

$$
\dot{v} + \frac{\nabla P}{\rho} + \nabla \varphi + \frac{1}{4\pi\rho} B \times (\nabla \times B) = F_d
$$

• Convention: $\hat{k} = \hat{x}$, $B_0 = B_x \hat{x} + B_y \hat{y}$, $\hat{k} \cdot \hat{B_0} = cos\phi$

 $\vec{r} = M\vec{r}$

• Convention: $\hat{k} = \hat{x}$, $B_0 = B_x \hat{x} + B_y \hat{y}$, $\hat{k} \cdot \hat{B_0} = cos \phi$

 $\vec{r} = M\vec{r}$

 $\begin{pmatrix} \delta \\ v_x \\ v_y \\ h \\ \delta x_e \end{pmatrix} = \begin{pmatrix} 0 & A & 0 & 0 & 0 \\ B & C & 0 & D & E \\ 0 & 0 & F & G & 0 \\ 0 & 0 & H & I & 0 \\ J & K & 0 & 0 & L \end{pmatrix} \begin{pmatrix} \delta \\ v_x \\ v_y \\ b \\ \delta x_e \end{pmatrix}$

Continuity

$$
\frac{\partial}{\partial t}\begin{pmatrix} \delta \\ v_x \\ v_y \\ h \\ \delta x_e \end{pmatrix} = \begin{pmatrix} 0 & A & 0 & 0 & 0 \\ B & C & 0 & D & E \\ 0 & 0 & F & G & 0 \\ 0 & 0 & H & I & 0 \\ J & K & 0 & 0 & L \end{pmatrix} \begin{pmatrix} \delta \\ v_x \\ v_y \\ b \\ \delta x_e \end{pmatrix}
$$

$(0 A 0 0 0$ δ δ $\begin{bmatrix} 0 & D & E \end{bmatrix}$ v_x v_x \boldsymbol{B} $|\partial|$ Euler F G 0 $\overline{0}$ $v_{\rm v}$ $v_{\rm v}$ $\overline{\partial t}$ $\begin{array}{|c|c|c|c|c|} \hline 0 & 0 & H & I & 0 \ J & K & 0 & 0 & L \ \hline \end{array}$ \boldsymbol{b} \boldsymbol{b} $\delta x_{\rm e}$

Boltzmann

1. Mode crosses horizon, typically enters during neutrino diffusion or free streaming (mostly ignore) - not as important as photon processing 2. Neutrino decoupling $(T \sim 1 \; MeV)$ – photon diffusion 3. Mode falls below photon MFP photon free-streaming

1. Mode crosses horizon, typically enters during neutrino diffusion or free streaming **(mostly ignore)** - not as important as photon processing 2. Neutrino decoupling $(T \sim 1 \text{ MeV})$ – photon diffusion 3. Mode falls below photon MFP photon free-streaming

1. Mode crosses horizon, typically enters during neutrino diffusion or free streaming (mostly ignore) - not as important as photon processing 2. Neutrino decoupling $(T \sim 1 \; MeV)$ – photon diffusion 3. Mode falls below photon MFP photon free-streaming

1. Mode crosses horizon, typically enters during neutrino diffusion or free streaming (mostly ignore) - not as important as photon processing 2. Neutrino decoupling $(T \sim 1 \; MeV)$ – photon diffusion 3. Mode falls below photon MFP photon free-streaming

Photon diffusion regime

- Neutrino-decoupling $(T \sim 1 \text{ MeV})$: photon-diffusion regime
	- Define comoving displacement of fluid: $v = a \xi$
		- Integrate continuity and induction equation and substitute into Euler equation
			- Coupled damped harmonic oscillators for x and y displacements

Photon diffusion regime

- Neutrino-decoupling $(T \sim 1 \text{ MeV})$: photon-diffusion regime
	- Modified silk damping with PMF source

- Surviving modes are almost purely transverse
- Only compressible modes couple to matter density field (continuity equation)

Free Streaming Saha

- Mode falls below photon MFP: photon free streaming regime
	- Surviving SM modes are mostly transverse

Power converted to compressible direction

Free Streaming Saha

Can this significantly modify recombination?

Saha vs. Radiative Transport

• Radiative transfer further suppresses growth across a wide range of length scales • Largest positive eigenvalue of system: $\dot{\vec{r}} = M \vec{r}$ · Investigations ongoing

CMB constraints

- Sound horizon and damping scale respond differently to shift in surface of last scattering
- Can have differential shift in angular scale of each for a change in sound horizon
- Better damping tale data can constrain how much one can even shift recombination while respecting constraints

Rashkovetskyi, Muñoz, Eisenstein, Dvorkin (2021)

CMB constraints

- Sound horizon and damping scale respond differently to shift in surface of last scattering
- Can have differential shift in angular scale of each for a change in sound horizon
- · Better damping tale data can constrain how much one can even shift recombination while respecting constraints
- Including ACT data to Planck likelihoods starts to disfavor models that shift recombination too much

Thiele, Guan, Hill, Kosowsky, Spergel (2021)

Other constraints

Cannot shrink sound horizon too far without worsening other S8 tension

- $r_s H_0$ slope fixed for given $\Omega_m h^2$
- BAO slopes differ from CMB slope
- Currently, not possible to fully resolve the Hubble tension with a modified recombination history

Jedamzik, Pogosian, Zhao (2021)

Conclusions

- Inhomogeneities speed up recombination
	- PMFs could be source of yet unaccounted for small-scale inhomogeneities that could resolve Hubble tension
	- Linear perturbation theory using local recombination schemes already constrains how much one can expect to shift the surface of last scattering
- Including non-local radiative transport seems to slow down recombination
- Constraints from CMB and other cosmological probes already cast doubt on the ability of modified recombination schemes fully resolving the Hubble tension