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Slow-Roll Inflation

The action for the inflaton field ϕ, minimally coupled to Einstein gravity is

S =

∫
d4x

√
−g

[
M2

pl

2
R − 1

2
∂µϕ∂

µϕ− V (ϕ)

]
(1)

where R is curvature scalar derived from the metric of the space-time gµν and
V (ϕ) is the inflationary scalar potential.

Figure: 1. Scalar potential. This classical dynamics solve the problems of the Big Bang standard

model, e.g. the horizon problem, the flatness problem, etc [Baumann arXiv:0907.542].
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Quantum Fluctuations During Inflation

Figure: 2 . Inflation also explains why the CMB has small inhomogeneities.

The power spectrum of the curvature fluctuation

⟨RkRk′⟩ = (2π)3δ(k+ k′)PR, Ps ≡
k3

2π2
PR (2)

And the spectral index

ns − 1 ≡ d lnPs

d ln k
(3)
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The power spectrum for tensor perturbations

⟨hkhk′⟩ = (2π)3δ(k+ k′)Ph Pt ≡
k3

π2
Ph (4)

And the spectral index

nt ≡
d lnPt

d ln k
(5)

The tensor-to-scalar ratio is

r ≡ Pt

Ps
(6)

Figure: 3. ns − r plane and latest Planck data [Akrami et al. Planck, 2020].
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Teleparallel Gravity

The dynamical variable is eA(x
µ). This is related to metric by

gµν = eAµ eBν ηAB (7)

where eAµ are the tetrad components in a coordinate base. The action of TG is
given by [Aldrovandi, Pereira, Springer 2013)]

S = −
M2

pl

2

∫
d4x e T (8)

being T the torsion scalar, e = det
(
eAµ

)
=

√
−g . The torsion scalar is defined as

T ≡ 1

4
T ρµνTρµν +

1

2
T ρµνTνµρ − Tρµ

ρT νµ
ν , where (9)

T ρ
µν ≡ e ρ

A

[
∂µe

A
ν − ∂νe

A
µ + ωA

Bµ eBν − ωA
Bν e

B
µ

]
(10)

are the components of torsion tensor. The spin connection of TG is

ωA
Bµ = ΛA

D(x)∂µΛ
D

B (x) → Γρ
µν = e ρ

A

(
∂νe

A
µ + ωA

Bνe
B
µ

)
(11)

which is the so-called Weitzenböck connection. Then, it can be shown that

T = −R − e−1∂µ(eT
νµ

ν ) (12)

This equation shows that TG and GR are equivalent theories.
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Generalized scalar-torsion f (T , ϕ) gravity

We start with the action [Hohmann,Järv, Ualikhanova PRD 97, 2018]

S =

∫
d4x e [f (T , ϕ) + P(ϕ)X ] (13)

where f is an arbitrary function of ϕ and the torsion scalar T , and also
X = −∂µϕ∂µϕ/2. Varying the action with respect to the tetrad field eAµ

f,TGµν + Sµν
ρ∂ρf,T +

1

4
gµν (f − Tf,T ) +

P

4
(gµνX + ∂µϕ∂νϕ) = 0 (14)

These equations are not symmetric. Under an infinitesimal Lorentz
transformation the variation of the action is

δS =

∫
d4xe∂ρf,TSµν

ρξµν where ξµν = e µ
A e ν

B ξAB , ξAB = −ξBA (15)

The condition δS = 0 for arbitrary ξAB leads us to

∂ρf,TS[µν]
ρ = 0 (16)

For TG one has ∂ρf,T = 0, and then local Lorentz invariance is restored. For
MTG one has ∂ρf,T ̸= 0 and then it corresponds to a set of six equations.
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Cosmological Background

We impose the standard homogeneous and isotropic background geometry

eAµ = diag(1, a, a, a) → ds2 = −dt2 + a2 δijdx
idx j (17)

which gives the flat FRW metric This is a proper tetrad and then we can choose
ωA

Bµ = 0 [Křšsák, Saridakis, CQG. 33, 2016]. We obtain the background equations

f (T , ϕ)− P(ϕ)X − 2Tf,T = 0 (18)

f (T , ϕ) + P(ϕ)X − 2Tf,T − 4Ḣf,T − 4Hḟ,T = 0 (19)

P(ϕ)ϕ̈+ 3P(ϕ)Hϕ̇+ P,ϕX − f,ϕ = 0 (20)

where H ≡ ȧ/a and T = 6H2. We introduce the slow-roll parameters

ϵ = − Ḣ

H2
, δPX = −P(ϕ)X

2H2f,T
, δf,T =

ḟ,T
f,TH

, δP =
Ṗ

HP
, δϕ =

ϕ̈

Hϕ̇
(21)

Then, the background equations (18) and (19) can be written as

ϵ = δPX + δf,T where δf,T = δf Ḣ + δfX (22)

where we have defined

δf Ḣ =
f,TT Ṫ

Hf,T
, δfX =

f,Tϕϕ̇

Hf,T
(23)
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Scalar Perturbations

We start from ADM decomposition [Wu, Geng,PRD 86, 2012]

e0µ = (N, 0) eaµ = (Na, ha
i ) e µ

0 =
(
1/N,−N i/N

)
e µ
a =

(
0, h i

a

)
(24)

where N i = h i
a N

a, with hajh
i

a = δij . In the uniform field gauge, δϕ = 0, we take

N = 1 + α, Na = a−1e−Rδai∂
iψ, ha

i = aeRδajδ
j
i (25)

which gives the corresponding perturbed metric

ds2 = −
[
(1 + α)2 − a−2e−2R (∂ψ)2

]
dt2 + 2∂iψdtdx

i + a2e2Rδijdx
idx j (26)

The additional degrees of freedom can be incorporated through

ΛA
B = (eχ)AB = δAB + χA

B +
1

2
χA

Cχ
C
B +O(χ3) (27)

e′Aµ = (eχ)AB eBµ = eAµ + χA
Be

B
µ +

1

2
χA

Cχ
C
Be

B
µ +O(χ3) (28)

χAB = −χBA is parameterized as χ0
B = (0, χb), χ

a
B = (χa,Ba

b) and then

χi = h i
a χ

a = ∂iβ + χ
(T )
i and Bij = ha

ih
b
jBab = −Bji = −ϵjikBk (29)

where β is a scalar mode [Wu,PLB 762,2016]
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Second order action

Expanding the action up to second order and integrating out α, ∂2ψ and ∂2β

S (2) =

∫
dtd3xa3Qs

[
Ṙ2 − c2s

a2
(∂R)2 −m2R2

]
where (30)

Qs =
PX

H2
, c2s = 1, ηR =

m2

3H2
= δf,T

[
1 +

(
1 +

δfX
δPX

)
δf,T
δf Ḣ

]
(31)

This represents the effects of local Lorentz violation in MTG.
For the non-minimally coupled scalar field model

δfX =
f,Tϕϕ̇

Hf,T
̸= 0 and δf Ḣ =

f,TT Ṫ

Hf,T
= 0 → ηR = ∞ (32)

However, this can be solved in the presence of a non-linear coupling. Also, in the
absence of coupling between T and ϕ, one has

δfX =
f,Tϕϕ̇

Hf,T
= 0 → ηR = 2δf,T = 2δf Ḣ ∼ O(ϵ) (33)

This is the explicit mass term arising in f (T ) gravity plus scalar field. Thus, for
TG, f ∼ T , one has

δf Ḣ =
f,TT Ṫ

Hf,T
= 0 → ηR = 0 (34)

which is consistent with the local Lorentz invariance of TG
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Mukhanov-Sasaki equation

We introduce the Mukhanov variable v ≡ zR, and z2 = 2a2Qs and dτ = dt/a

S (2) =
1

2

∫
dτd3x

[
(v ′)2 − c2s (∂v)

2 −M2v 2
]
, M2 = a2m2 − z ′′

z
(35)

where m2 = 3H2ηR. Varying the action and using the Fourier expansion

v ′′
k +

[
k2 − 1

τ 2

(
ν̃2 − 1

4

)]
vk = 0, ν̃ = ν − ηR =

3

2
+ ϵ+

1

2
η − ηR (36)

For ν̃ constant and real, the exact solution to (36) is

vk(τ) =
√
−τ

[
C1H

(1)
ν̃ (−kτ) + C2H

(2)
ν̃ (−kτ)

]
(37)

where H
(1)
ν̃ and H

(2)
ν̃ are the Hankel’s functions [Riotto, Notes 2003]. By imposing

the Bunch-Davies vacuum vk(τ) = e−ikτ/
√
2k at k ≫ aH (−kτ ≪ 1)

vk(τ) =

√
π

2
e i

π
2 (ν̃+

1
2 )(−τ)

1
2H

(1)
ν̃ (−kτ) (38)

On super-horizon scales k ≪ aH (−kτ → 0) one finds

vk(τ) = e i
π
2 (ν̃−

1
2 )2ν̃−

3
2
Γ(ν̃)

Γ( 3
2
)

1√
2k

(−kτ)
1
2
−ν̃ (39)
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Primordial Scalar Power Spectrum

We obtain on superhorizon scales [Gonzalez-Espinoza, Otalora, PLB 809, 2020]

|Rk | ≃
H

2
√
k3Qs

(
k

aH

)−ϵ−η/2+ηR

≃ Hk

2
√
k3Qsk

[
1 + ηR ln

(
k

aH

)]
(40)

where η =
Q̇s

HQs
= δP + 2δϕ + 2ϵ (41)

and Hk and Qsk are the values of H and Qs at k = aH.
The scalar power spectrum is given by

Ps(k) ≡
k3

2π2
|Rk(τ)|2 ≃

H2
k

8π2Qsk

[
1 + 2ηR ln

(
k

aH

)]
(42)

Then the consequence of local Lorentz violation is a slight logarithmic
time-dependence of R and Ps at superhorizon scales.
Finally, the scale-dependence of the scalar power spectrum is

ns − 1 ≡ d lnPs(k)

d ln k

∣∣∣∣
k=aH

= −2ϵ− η + 2ηR (43)

This carries out the effects of local Lorentz violation on the scalar power
spectrum through the term 2ηR, at first-order in slow-roll approximation.
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Primordial Tensor Power Spectrum

Then, using the tetrad formalism we find the second-order action for the tensor
modes, hij = h+e

+
ij + h×e

×
ij , in the way

ST =
∑
λ

∫
dtd3xa3QT

[
ḣ2
λ − c2T

a2
(∂hλ)

2

]
where QT = −1

2
f,T , c2T = 1 (44)

The non-ghost condition is satisfied only for f,T < 0. There are no additional
propagating modes in the quadratic action. Thus, the power spectrum for tensor
perturbations becomes

PT =
H2

k

2π2QTk
(45)

with Hk and QTk the values of H and QT at k = aH.
Tensor-to-scalar ratio, evaluated at the horizon crossing, is given by

r =
PT

Ps
≃ 16δPX = 16

(
ϵ− δf,T

)
(46)

Also, we can obtain the consistency relation

r = 8
(
−nT − 3δf,T

)
where nT ≡ d lnPT

d ln k

∣∣∣∣
k=aH

= −2ϵ− δf,T (47)

This is agreement with the standard inflation limit where r = −8nT .
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Reconstructing inflation

In the slow-roll regime, ϵ, δPX , δϕ ≪ 1, and we have (Eqs. (18) and (20))

f (T , ϕ) ≃ 2Tf,T , (48)

3P(ϕ)Hϕ̇ ≃ f,ϕ. (49)

We consider [Gonzalez-Espinoza, Herrera, Otalora, Saavedra, EPJC 81, 2021]

f (T , ϕ) = −
M2

pl

2
T − G(T )F (ϕ)− V (ϕ), (50)

where G (T ) ∼ T 1+s , s a constant. Thus, the background equations (48), (49)
take the form

M2
pl

2
T + (2s + 1)FT s+1 ≃ V , (51)

ϕ̇

MplH
≃ −

[
2GF,ϕ

MplT
+

2V,ϕ

MplT

]
. (52)

Below, we introduce the number of e−folds N

N = log(af /a) =

∫ tf

t

Hdt =

∫ ϕf

ϕ

H

ϕ̇
dϕ. (53)
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Assuming T = T (ϕ), ϕ = ϕ(N), and performing

V,ϕ =
V,N

ϕ,N
, F,ϕ =

F,N

ϕ,N
, (54)

and

V,ϕϕ =
V,NN

ϕ2
,N

− V,Nϕ,NN

ϕ3
,N

, F,ϕϕ =
F,NN

ϕ2
,N

− F,Nϕ,NN

ϕ3
,N

, (55)

from Eq. (52) we find

ϕ,N =

√
2

T
(F,NG + V,N) , (56)

and therefore

ns(N)− 1 = T,N

[
1

T
− F,NG,T

F,NG + V,N

]
+

V,NN

F,NG + V,N
+

F,NNG

F,NG + V,N
− 4 (F,NG + V,N)

T
(
M2

pl + 2FG,T

) −

2F,N (G − 2TG,T ) + V,N

T
(
M2

pl + 2F (2TG,TT + G,T )
) −

2F 2
,NG

2
,T

FG,TT (F,NG + V,N)
, (57)

and

r(N) =
16 (F,NG + V,N)

T
(
M2

pl + 2FG,T

) . (58)
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High-energy limit

In order to obtain T = T (ϕ) we use the approximation

M2
pl

2
T + (2s + 1)FT s+1 ≃ (2s + 1)FT s+1 = V , → T ≃

[
V

(2s + 1)F

]1/(s+1)

. (59)

Applying this limit to ns(N) (57) and r(N) (58), and combining the resulting
expressions with r,N we obtain

F (N) = F0 exp

∫ N

N0

s
(
−3r ±

√
A
)

32
dN ′

 , (60)

V (N) = V0 exp

[∫ N

N0

(7s + 4)r ∓ s
√
A

32(1 + 2s)
dN ′

]
, (61)

where

A =
r [64(2s + 1)(1− ns)− (15s + 8)r ]

s
+

64(2s + 1)r,N
s

> 0, (62)

being that V0 > 0 and F0 > 0 are two integration constants defined as
F (N = N0) = F0 and V (N = N0) = V0, in which N0 is such that N > N0 > 0.
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Examples

Following [ Chiba, PTEP, 073E02, 2015] and [ Herrera, PRD, 98, 023542 (2018)]:

Example 1: ns(N) = 1− 2

N
, and r(N) =

q

N
, (63)

In this case we obtain:

F (ϕ) = F0(ϕ− ϕ0)
σ1 , V (ϕ) = V0(ϕ− ϕ0)

σ2 , (64)

where N(ϕ = ϕ0) = N0, and F0, V0, σ1 and σ2 are constants, being that σ1 and
σ1 depend on s and q.

Example 2: ns(N) = 1− 2

N
, and r(N) =

q

N(N + γ)
, (65)

which leads us to

F (ϕ) ≃ F0

[
1− γp1e

−η1(ϕ−ϕ0)

N0

]
, V (ϕ) ≃ V0

[
1− γp2e

−η1(ϕ−ϕ0)

N0

]
, (66)

where p1, p2, η1 and η2 are constants, and we have assumed γ/N ≪ 1.
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Conclusions

The breaking of local Lorentz symmetry in MTG leads to the existence of
additional degrees of freedom that can induce new imprints on the
inflationary observables.

The additional tensor modes are completely cancelled out from the second
order action for tensor perturbations, remaining only the usual transverse
massless graviton modes, propagating at the speed of light.

In the second order action for the curvature perturbation, it is observed the
emergence of an explicit mass term, which represents the effects of local
Lorentz violation. This leads to a slight logarithmic time-dependence of R
and Ps at superhorizon scales.

The new contributions to the tensor-to-scalar ratio r coming from MTG can
either lower its value bringing it to values more compatible with observations,
or raise it too much and then leave it outside the allowed contour regions
from the latest Planck data.

Using very well-known attractors for ns and r , one can reconstruct the
non-minimal coupling and the scalar potential, thus providing results in
agreement with observations.
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Thank you very much!
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