A (DOUBLE) TAKE ON THE γ_L INDEX EXPLORING LINEAR GROWTH WITH CMB DATA

Enrico Specogna University of Sheffield, UK

Corfu Summer Institute, 10th September 2023

arXiv:2305.16865

➡ EISA European Institute for Sciences and their Applications

A (DOUBLE) TAKE ON THE γ_I INDEX

 Since its first confirmed observation in 1964, CMB has always provided measurements that demonstrated the validity of the Big Bang theory and, more recently, the ΛCDM model.

- Since its first confirmed observation in 1964, CMB has always provided measurements that demonstrated the validity of the Big Bang theory and, more recently, the ΛCDM model.
- COBE, launched in 1989, was the first mission entirely dedicated to the study of CMB.

A D > A P > A B > A B >

CMB and the ACDM Model

- Since its first confirmed observation in 1964, CMB has always provided measurements that demonstrated the validity of the Big Bang theory and, more recently, the ΛCDM model.
- COBE, launched in 1989, was the first mission entirely dedicated to the study of CMB.
- It measured CMB radiation's temperature directly [Mather et al., 1998]:

 $T_{CMB,0} = 2.725 \pm 0.002$ K.

A D > A P > A B > A B >

 This was obtained by fitting a theoretical blackbody spectrum to the measurements by FIRAS (one of COBE's instruments).

 This was obtained by fitting a theoretical blackbody spectrum to the measurements by FIRAS (one of COBE's instruments).

Blackbody spectrum measured by FIRAS [Mather et al., 1998].

 This was obtained by fitting a theoretical blackbody spectrum to the measurements by FIRAS (one of COBE's instruments).

Blackbody spectrum measured by FIRAS [Mather et al., 1998].

• Pretty neat! (50-parts-in-10⁶ neat to be precise)

 WMAP further confirmed our picture of the universe, measuring the anisotropies in the temperature spectrum of CMB.

- WMAP further confirmed our picture of the universe, measuring the anisotropies in the temperature spectrum of CMB.
- Planck continued this streak of successes, being the most complete and precise CMB experiment to date.

- WMAP further confirmed our picture of the universe, measuring the anisotropies in the temperature spectrum of CMB.
- Planck continued this streak of successes, being the most complete and precise CMB experiment to date.

Data from [Aghanim et al., 2020]

 However, as we have known since WMAP, CMB data does not agree well with other probes on some ΛCDM parameters.

- However, as we have known since WMAP, CMB data does not agree well with other probes on some ΛCDM parameters.
- Planck [Aghanim *et al.*, 2020] measures:

 $H_0 = 67.4 \pm 0.5 \, ({\rm km/s})/{
m Mpc}$

< □ > < □ > < □ > < □ > < □ > < □ >

- However, as we have known since WMAP, CMB data does not agree well with other probes on some ΛCDM parameters.
- Planck [Aghanim *et al.*, 2020] measures:

 $H_0 = 67.4 \pm 0.5 \, ({\rm km/s})/{
m Mpc}$

• When we measure H_0 , we get very different values among different datasets.

- However, as we have known since WMAP, CMB data does not agree well with other probes on some ΛCDM parameters.
- Planck [Aghanim *et al.*, 2020] measures:

 $H_0 = 67.4 \pm 0.5 \, ({\rm km/s})/{
m Mpc}$

- When we measure H₀, we get very different values among different datasets.
 A few examples:
 - SNe calibrated with Cepheids [Riess et al., 2021]:

 $H_0 = 73.04 \pm 1.04 \, (\mathrm{km/s}) / \mathrm{Mpc} \ (\sim 5\sigma \, \mathrm{away})$

- However, as we have known since WMAP, CMB data does not agree well with other probes on some ΛCDM parameters.
- Planck [Aghanim *et al.*, 2020] measures:

 $H_0 = 67.4 \pm 0.5 \, ({\rm km/s})/{
m Mpc}$

- When we measure H₀, we get very different values among different datasets.
 A few examples:
 - SNe calibrated with Cepheids [Riess et al., 2021]:

 $H_0 = 73.04 \pm 1.04 \, (\mathrm{km/s}) / \mathrm{Mpc} \ (\sim 5\sigma \, \mathrm{away})$

SNe calibrated with TRGBs [Scolnic et al., 2023]:

 $H_0 = 73.22 \pm 2.06 \, (\mathrm{km/s}) / \mathrm{Mpc} \ (\sim 2.7 \sigma \, \mathrm{away})$

• Another parameter at tension within the Λ CDM model, S_8 , is characterised by a discrepancy between CMB and other late-time probes.

- Another parameter at tension within the Λ CDM model, S_8 , is characterised by a discrepancy between CMB and other late-time probes.
- Planck [Aghanim et al., 2020] measures:

 $S_8 = 0.834 \pm 0.016$

- Another parameter at tension within the Λ CDM model, S_8 , is characterised by a discrepancy between CMB and other late-time probes.
- Planck [Aghanim et al., 2020] measures:

$$S_8 = 0.834 \pm 0.016$$

Analyses including both Galactic Clustering and Weak Lensing have given:
 [Abbott *et al.*, 2022]:

$$S_8 = 0.776 \pm 0.017 (\sim 2.5\sigma \text{ away})$$

- Another parameter at tension within the Λ CDM model, S_8 , is characterised by a discrepancy between CMB and other late-time probes.
- Planck [Aghanim et al., 2020] measures:

$$S_8 = 0.834 \pm 0.016$$

Analyses including both Galactic Clustering and Weak Lensing have given:
 [Abbott *et al.*, 2022]:

$$S_8 = 0.776 \pm 0.017 (\sim 2.5\sigma \text{ away})$$

[Heymans et al., 2022]:

$$S_8 = 0.766^{+0.020}_{-0.014} (\sim 3\sigma \text{ away})$$

• The lensing of CMB can be quantified by the A_L parameter, which changes the Λ CDM lensing potential spectrum $C_l^{\phi\phi}$ [Calabrese *et al.*, 2008]:

$$C_L^{\phi\phi} o A_L C_L^{\phi\phi}$$

• The lensing of CMB can be quantified by the A_L parameter, which changes the Λ CDM lensing potential spectrum $C_L^{\phi\phi}$ [Calabrese *et al.*, 2008]:

 $C_L^{\phi\phi} \to A_L \overline{C_L^{\phi\phi}}$

• In Λ CDM, by definition, $A_L = 1$.

- In Λ CDM, by definition, $A_L = 1$.
- Since the 2013 release, Planck data showed a *lensing excess* compared to the ACDM model expectation.

- In Λ CDM, by definition, $A_L = 1$.
- Since the 2013 release, Planck data showed a *lensing excess* compared to the ACDM model expectation.
- Planck [Aghanim et al., 2020] measures:

 $A_L = 1.180 \pm 0.065 (\sim 2.8\sigma \text{ away})$

8/23

- In Λ CDM, by definition, $A_L = 1$.
- Since the 2013 release, Planck data showed a *lensing excess* compared to the ACDM model expectation.
- Planck [Aghanim et al., 2020] measures:

 $A_L = 1.180 \pm 0.065 (\sim 2.8\sigma \text{ away})$

 ${\ensuremath{\bullet}}$ One way to tackle these tensions is to stretch beyond ΛCDM by modifying GR.

8/23

A D > A A P > A P > A P >

• Because MG models are often degenerate w.r.t. the Standard Model's expansion history, we can assume a Λ CDM background.

- Because MG models are often degenerate w.r.t. the Standard Model's expansion history, we can assume a ACDM background.
- Instead, we modify the growth history (i.e., the ΛCDM perturbation equations).

- Because MG models are often degenerate w.r.t. the Standard Model's expansion history, we can assume a ACDM background.
- Instead, we modify the growth history (i.e., the ΛCDM perturbation equations).
- Given our uncertainty on a fundamental mechanism that can describe expansion and growth consistently, we can choose to modify ACDM in a general, model-independent way.

- Because MG models are often degenerate w.r.t. the Standard Model's expansion history, we can assume a Λ CDM background.
- ${\tilde {\circline 1}}$ Instead, we modify the growth history (i.e., the ΛCDM perturbation equations).
- Given our uncertainty on a fundamental mechanism that can describe expansion and growth consistently, we can choose to modify ACDM in a general, model-independent way.
- An example of this modification is the μ , η parametrisation [Kunz+Sapone, 2007][Wang *et al.*, 2023]:

$$\Phi = \Psi
ightarrow \Phi = \mu(a,k)\Psi,
onumber \ G_N
ightarrow \eta(a,k)G_N.$$

• [Linder, 2005] proposed that matter density growth, identified with the growth rate $f(a) = \frac{d \ln (D)}{d \ln (a)}$, can be parametrised at linear scales as:

 $f(a) = \Omega_m^{\gamma_L}.$

• [Linder, 2005] proposed that matter density growth, identified with the growth rate $f(a) = \frac{d \ln (D)}{d \ln (a)}$, can be parametrised at linear scales as:

 $f(a) = \Omega_m^{\gamma_L}.$

• This ansatz can be as accurate as 0.05% in reproducing the growth in Λ CDM model when $\gamma_L \approx 0.55$ [Linder, 2005].

• [Linder, 2005] proposed that matter density growth, identified with the growth rate $f(a) = \frac{d \ln (D)}{d \ln (a)}$, can be parametrised at linear scales as:

$$f(a) = \Omega_m^{\gamma_L}.$$

- This ansatz can be as accurate as 0.05% in reproducing the growth in Λ CDM model when $\gamma_L \approx 0.55$ [Linder, 2005].
- In a MG model like DGP cosmology (i.e., the *Dvali-Gabadadze-Porrati* MG model, [Dvali *et al.*, 2000]), we accurately obtain: $\gamma_L \approx 0.68$.

• [Linder, 2005] proposed that matter density growth, identified with the growth rate $f(a) = \frac{d \ln (D)}{d \ln (a)}$, can be parametrised at linear scales as:

$$f(a)=\Omega_m^{\gamma_L}.$$

- This ansatz can be as accurate as 0.05% in reproducing the growth in Λ CDM model when $\gamma_L \approx 0.55$ [Linder, 2005].
- In a MG model like DGP cosmology (i.e., the *Dvali-Gabadadze-Porrati* MG model, [Dvali *et al.*, 2000]), we accurately obtain: $\gamma_L \approx 0.68$.
- This substantial difference shows γ_L to be a powerful tool to detect departures from ΛCDM in the data.

• How can γ_L affect perturbations? In this work we considered and compared two different approaches.

- ${}_{\odot}$ How can γ_L affect perturbations? In this work we considered and compared two different approaches.
- MGCAMB [Wang *et al.*, 2023]:
 - this Boltzmann code modifies the perturbation equations of ACDM using the μ, η parametrisation mentioned above;

$$\mu = rac{2}{3} \Omega_{
m m}^{\gamma_L - 1} \left[\Omega_{
m m}^{\gamma_L} + 2 + rac{H'}{H} + \gamma_L rac{\Omega_{
m m}'}{\Omega_{
m m}} + \gamma_L' \ln(\Omega_{
m m})
ight];$$

in the sub-horizon limit ($k \gtrsim 0.0003 \, h \, Mpc^{-1}$), γ_L can be mapped onto μ [Zucca *et al.*, 2019], which in turn affects the shape of the CMB anisotropies spectrum.

- ${}_{\odot}$ How can γ_L affect perturbations? In this work we considered and compared two different approaches.
- MGCAMB [Wang *et al.*, 2023]:
 - this Boltzmann code modifies the perturbation equations of ACDM using the μ, η parametrisation mentioned above;

$$\mu = rac{2}{3} \Omega_{
m m}^{\gamma_L - 1} \left[\Omega_{
m m}^{\gamma_L} + 2 + rac{H'}{H} + \gamma_L rac{\Omega_{
m m}'}{\Omega_{
m m}} + \gamma_L' \ln(\Omega_{
m m})
ight];$$

- in the sub-horizon limit ($k \gtrsim 0.0003 \, h \, Mpc^{-1}$), γ_L can be mapped onto μ [Zucca *et al.*, 2019], which in turn affects the shape of the CMB anisotropies spectrum.
- CAMB_GammaPrime_Growth [Nguyen et al., 2023]:
 - the matter power spectrum in ACDM is modified *directly* by γ_L

$$P(\gamma_L, k, a) = P(k, a = 1) D^2(\gamma_L, a);$$

this choice modifies the part of the CMB spectrum affected by sub-horizon physics *only* i.e., the lensing potential spectrum $C_L^{\phi\phi}$.

MGCAMB - [Specogna et al., 2023]

arXiv:2305.16865

< < >> < </p>

CAMB_GammaPrime_Growth - [Specogna et al., 2023]

< < >> < </p>

Parameter	Planck	Planck+BAO	Planck+lensing	Planck+BAO+lensing
$\Omega_{ m b} h^2$	0.02253 ± 0.00016	0.02250 ± 0.00016	0.02249 ± 0.00016	0.02246 ± 0.00015
$\Omega_{ m c} h^2$	0.1187 ± 0.0015	0.1190 ± 0.0013	0.1186 ± 0.0014	0.1189 ± 0.0012
$100 heta_{ m MC}$	1.04110 ± 0.00032	1.04106 ± 0.00032	1.04107 ± 0.00032	1.04103 ± 0.00030
$ au_{reio}$	0.0510 ± 0.0085	0.0507 ± 0.0082	$0.0496^{+0.0087}_{-0.0073}$	$0.0490\substack{+0.0083\\-0.0073}$
	0.9688 ± 0.0047	0.9681 ± 0.0045	0.9684 ± 0.0046	0.9675 ± 0.0042
$\log(10^{10}A_{\rm s})$	$\textbf{3.034} \pm \textbf{0.018}$	$\textbf{3.034} \pm \textbf{0.017}$	$3.030\substack{+0.018\\-0.015}$	3.030 ± 0.017
γL	$0.467\substack{+0.018\\-0.029}$	$0.469\substack{+0.017\\-0.029}$	0.506 ± 0.022	$0.509\substack{+0.022\\-0.020}$
H ₀	68.02 ± 0.66	67.86 ± 0.60	68.00 ± 0.64	67.84 ± 0.57
<i>S</i> ₈	0.839 ± 0.015	0.842 ± 0.015	0.824 ± 0.013	0.827 ± 0.012

Constraints at 68% CL for MGCAMB with Planck

Parameter	Planck	Planck+BAO	Planck+lensing	Planck+BAO+lensing
$\Omega_{ m b} h^2$	0.02258 ± 0.00016	0.02255 ± 0.00016	0.02251 ± 0.00017	0.02248 ± 0.00016
$\Omega_{ m c} h^2$	0.1181 ± 0.0015	0.1186 ± 0.0013	0.1183 ± 0.0015	0.1188 ± 0.0013
$100 heta_{ m MC}$	1.04113 ± 0.00032	1.04108 ± 0.00031	1.04109 ± 0.00032	1.04103 ± 0.00032
	$0.0496\substack{+0.0087\\-0.0074}$	0.0495 ± 0.0084	$0.0493^{+0.0087}_{-0.0074}$	$0.0488^{+0.0086}_{-0.0075}$
	0.9709 ± 0.0047	0.9696 ± 0.0045	0.9696 ± 0.0048	0.9683 ± 0.0044
$\log(10^{10}A_{\rm s})$	3.030 ± 0.017	3.031 ± 0.018	$3.029\substack{+0.018\\-0.016}$	$3.029\substack{+0.018\\-0.016}$
γL	$0.841\substack{+0.11 \\ -0.074}$	$0.831\substack{+0.11 \\ -0.080}$	0.669 ± 0.069	0.658 ± 0.063
H ₀	68.27 ± 0.69	68.06 ± 0.61	68.14 ± 0.70	67.92 ± 0.61
<i>S</i> ₈	0.805 ± 0.018	0.810 ± 0.017	0.807 ± 0.019	0.812 ± 0.017

Constraints at 68% CL for CAMB_GammaPrime_Growth with Planck

Parameter	SPT	SPT+BAO	SPT+WMAP	SPT+WMAP+BAO
$\Omega_{ m b} h^2$	0.02238 ± 0.00033	0.02237 ± 0.00032	0.02264 ± 0.00023	0.02259 ± 0.00021
$\Omega_{ m c} h^2$	0.1175 ± 0.0057	0.1186 ± 0.0026	0.1153 ± 0.0028	0.1171 ± 0.0020
$100 heta_{ m MC}$	1.03945 ± 0.00081	1.03933 ± 0.00069	1.03973 ± 0.00066	1.03954 ± 0.00064
$ au_{reio}$	0.065 ± 0.015	0.066 ± 0.015	0.060 ± 0.013	0.058 ± 0.013
n _s	0.991 ± 0.025	0.987 ± 0.019	0.9733 ± 0.0075	0.9709 ± 0.0067
$\log(10^{10}A_{ m s})$	$\textbf{3.040} \pm \textbf{0.039}$	$\textbf{3.043} \pm \textbf{0.038}$	3.041 ± 0.025	3.042 ± 0.026
γL	$0.622\substack{+0.075\\-0.11}$	$0.635\substack{+0.063\\-0.084}$	$0.556\substack{+0.023\\-0.018}$	$0.558^{+0.024}_{-0.018}$
H ₀	67.8 ± 2.3	67.3 ± 1.0	68.9 ± 1.2	68.11 ± 0.83
<i>S</i> ₈	0.796 ± 0.048	0.804 ± 0.028	0.782 ± 0.032	0.801 ± 0.025

Constraints at 68% CL for MGCAMB with SPT

Parameter	SPT	SPT+BAO	SPT+WMAP	SPT+WMAP+BAO
$\Omega_{ m b} h^2$	0.02241 ± 0.00033	0.02238 ± 0.00031	0.02259 ± 0.00024	0.02253 ± 0.00022
$\Omega_{ m c} h^2$	0.1164 ± 0.0056	0.1183 ± 0.0026	0.1167 ± 0.0032	0.1178 ± 0.0021
$100 heta_{ m MC}$	1.03953 ± 0.00081	1.03935 ± 0.00067	1.03955 ± 0.00071	1.03942 ± 0.00064
$ au_{reio}$	0.065 ± 0.015	0.065 ± 0.015	0.062 ± 0.013	0.061 ± 0.013
n _s	0.994 ± 0.024	0.989 ± 0.019	0.9709 ± 0.0080	0.9687 ± 0.0068
$\log(10^{10}A_{\rm s})$	$\textbf{3.035} \pm \textbf{0.039}$	$\textbf{3.040} \pm \textbf{0.035}$	$\textbf{3.049} \pm \textbf{0.027}$	3.051 ± 0.027
γL	0.46 ± 0.19	0.41 ± 0.15	0.43 ± 0.14	0.41 ± 0.13
H ₀	$68.3^{+2.1}_{-2.4}$	67.4 ± 1.0	68.3 ± 1.4	67.77 ± 0.89
<i>S</i> ₈	0.803 ± 0.064	0.824 ± 0.032	0.802 ± 0.039	0.815 ± 0.027

Constraints at 68% CL for CAMB_GammaPrime_Growth with SPT

MGCAMB

CAMB_GammaPrime_Growth

• There is a clear difference when the lensing reconstruction is included with Planck, or when we alternatively consider SPT and ACT.

- There is a clear difference when the lensing reconstruction is included with Planck, or when we alternatively consider SPT and ACT.
- A possible explanation is to consider A_L , which we know to be a problem in the Planck dataset.

- There is a clear difference when the lensing reconstruction is included with Planck, or when we alternatively consider SPT and ACT.
- A possible explanation is to consider A_L , which we know to be a problem in the Planck dataset.
- While this model represented a simple modification, it does not represent a solution to the cosmological tensions.

- There is a clear difference when the lensing reconstruction is included with Planck, or when we alternatively consider SPT and ACT.
- A possible explanation is to consider A_L , which we know to be a problem in the Planck dataset.
- While this model represented a simple modification, it does not represent a solution to the cosmological tensions.
- γ_L was assumed to be constant, but it does not have to be (could be extended to include, for instance, redshift dependence).

e-mail: especogna1@sheffield.ac.uk

A (DOUBLE) TAKE ON THE γ_I INDEX

arXiv:2305.16865 21/23

Comparing Two γ_L Codes (extra)

MGCAMB - [Specogna et al., 2023]

arXiv:2305.16865

< < >> < </p>

Comparing Two γ_L Codes (extra)

CAMB_GammaPrime_Growth - [Specogna et al., 2023]

Enrico Specogna

A (DOUBLE) TAKE ON THE γ_I INDEX

arXiv:2305.16865

(ロ) (四) (三) (三)