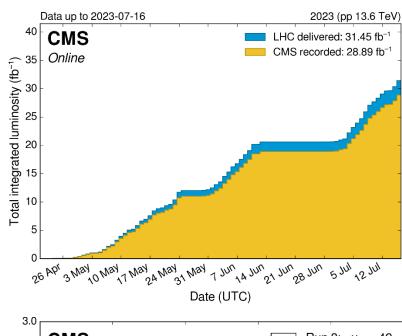
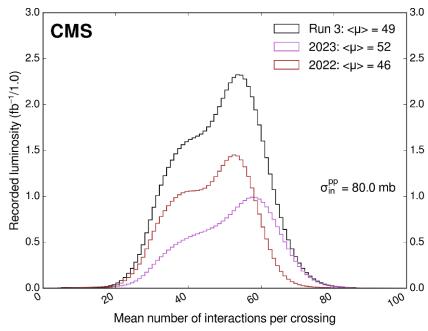

Run 3 data taking campaign

Physics analysis highlights

Phase 2 upgrade progress

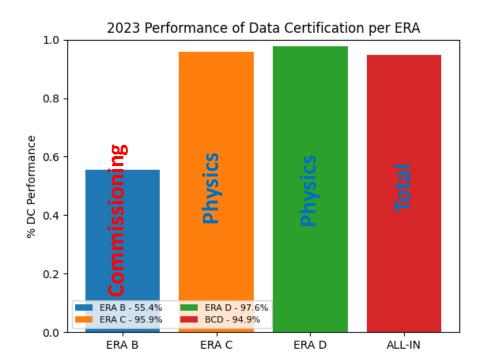


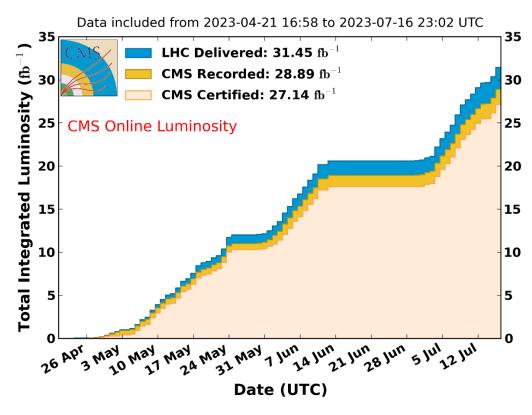


Run 3 data taking

• 2023 proton runs

- 29 fb⁻¹ recorded integrated luminosity
- ~92% of data taking efficiency
- Encountered no major problems
- Reduced operation for a month after LHC incident on July 17
- CMS has been running well since restart
 - detectors have been re-commissioned with cosmics and first stable proton collisions
 - High-beta* run with TOTEM detector this week
- Preparation for pp reference run and HI run ongoing
 - With priority to the integration and commissioning of a newly installed ZDC detector for the HI run





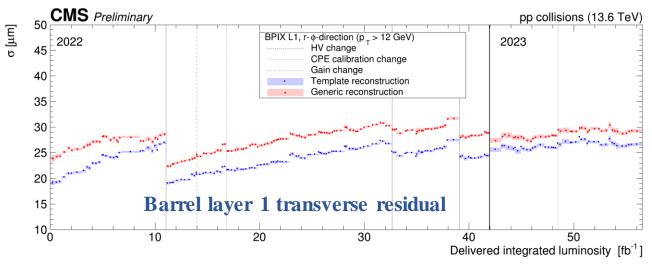
Data Certification

CMS Integrated Luminosity, pp, 2023, $\sqrt{s}=$ 13.6 TeV

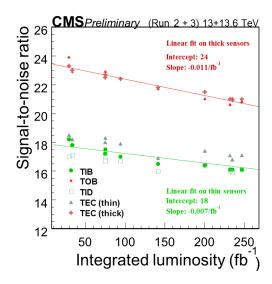
- 2023 data certification efficiency is 94%
- Lower efficiency in Spring due to detector/calibration optimization
- Smoother running during the last data-taking era

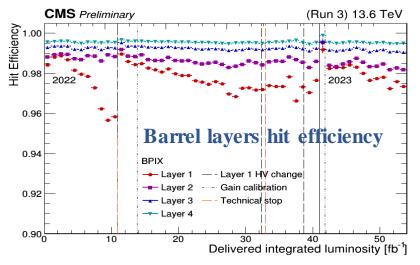
Certified data recorded with all detectors and reconstructed physics objects showing good performance

Tracker


Strip detector

- Active fraction of Strip detector is stable
- Performance keeps evolving along expected trend


• Pixel detector:


- Lost 4-hit coverage in about 3% of the barrel area due to a hardware failure in the master clock tree of the outer two layers
- Change in performance due to radiation damage in layer 1 slowed down as expected, uniform performance throughout 2023
- Despite the larger average pileup in recent fills, the efficiency remained high

• Smooth restart coming back from powered-down state over August

Strip detector signal to noise ratio

Electromagnetic Calorimeter

- ECAL ran smoothly up to LHC incident, coping well with demanding trigger rate & pileup
 - Occasional downtime was caused by frequent SEUs in endcap and preshower, and problems with FEDs, which were promptly addressed
- ECAL calibration campaign is on-going with an automated workflow
 - Automation ran smoothly in 2022 and continues to operate well in 2023, with added workflows
- Preparations for heavy ion running underway in collaboration with CMS heavy ion colleagues

Hadronic Calorimeter

HCAL successful operation ongoing

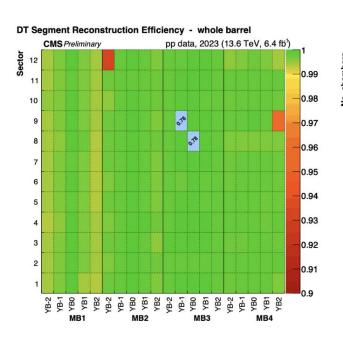
• Detector in best condition, recently performed warm annealing of SiPMs

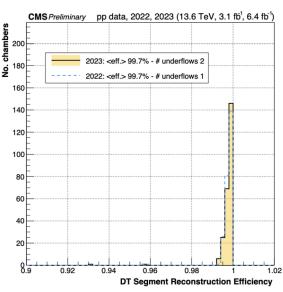
Preparation for the heavy-ion run

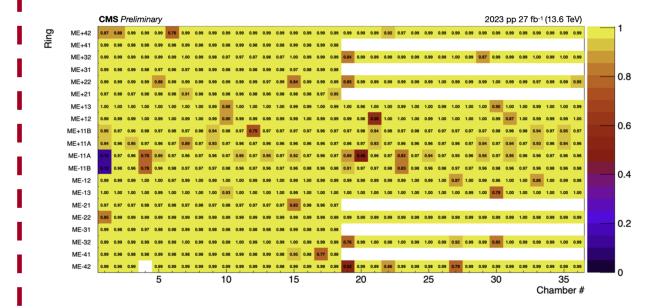
- ZDC test beam completed in August to study electromagnetic section of detector
- Successful hardware integration of ZDC into CMS L1 trigger, a crucial step to ensure quality of 2023 HI data

Improved operations and quality of data

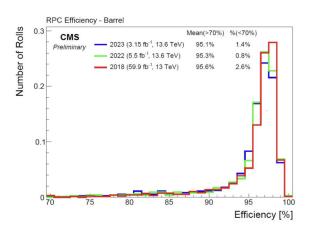
- Faster recovery from SEUs in the SiPM control board (BV upsets), automatic backend electronics resynchronization
- Reconstruction and calibration: first depth- and η -dependent pulse-shape measurements

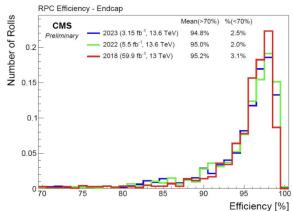

H4 test beam

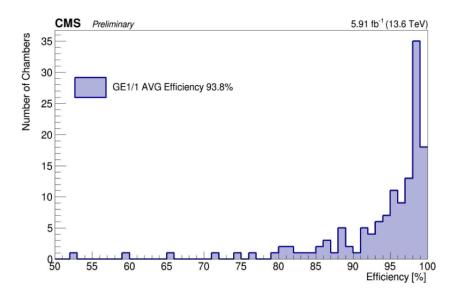



Muon System: DTs and CSCs

DT local reconstruction efficiency (left) is above 99% for all chambers, remaining consistent with 2022 (right)

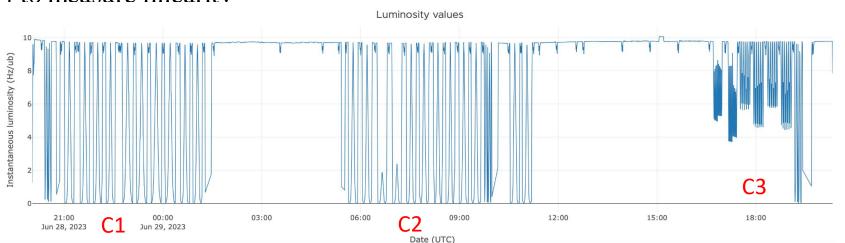

CSC Trigger Primitive Efficiency is close to 100% in more than 98% of the system

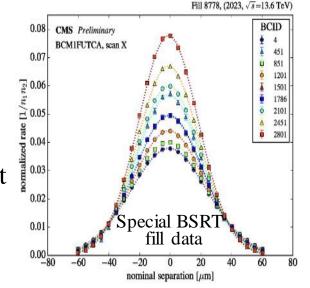


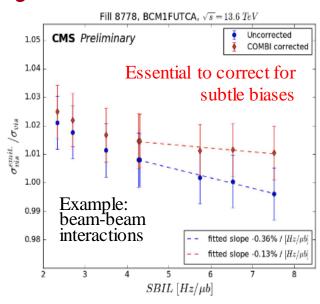

Muon System: RPCs and GEMs

RPC efficiency distribution in the Barrel (left) and Endcap regions (right) is stable compared to 2018 and 2022

- Optimized the **GEM** HV working point chamber by chamber to guarantee high efficiency and minimize discharge rate
- The **GEM** average efficiency for all good chambers is 93.8%. Chambers below 90% underperform due to known problems


Beam Radiation, Instrumentation and Luminosity


Many studies towards high precision luminosity

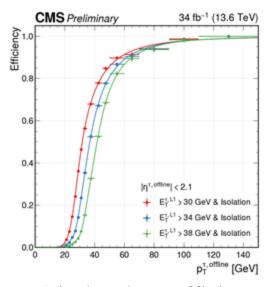

 Measurements performed on absolute linearity per luminometer


Excellent vdM data taken in 28 June – 4 July, work on the analysis ongoing

- C1&C2 to determine calibration for all 6 independent luminometers
- C3 to calibrate LHC steering magnets
- C4 to measure linearity

Precision Proton Spectrometer

- Expected correlation verified between proton times and vertex position in the two newly commissioned timing stations
- Improvements in DAQ allowed to sustain L1 trigger rates up to 110-120 kHz with negligible deadtime
- No limitations (e.g. cooling) imposed at maximum luminosities this year
- Roman Pots will not be used for the rest of 2023: pixel detectors will be active only for the high-beta* run, diamond timing detectors already extracted
- Delivering final calibrations for physics analyses with protons

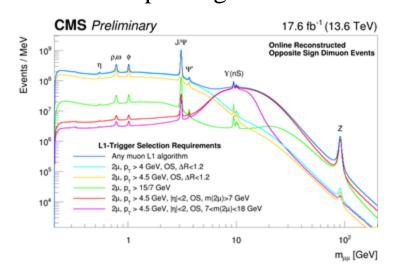

Heavy Ion run preparations:

- ZDC is necessary to improve the HI minimum bias trigger
- HI menu containing ZDC-based trigger algorithms is ready
- Total latency of the ZDC trigger being within budget to be verified with collisions

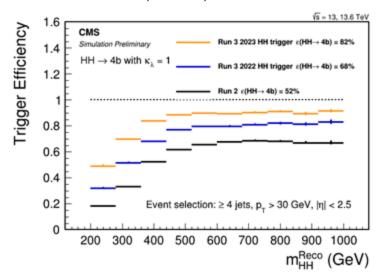
L1T performance in 2023:

- L1T objects have excellent performance improving on 2022 data taking performances: EG/Tau <u>DP-2023-055</u>, Jet/MET <u>DP-2023-054</u>, Muon <u>DP-2023-057</u>, Displaced Muon <u>DP-2023-056</u>
- Several improvements to data quality monitoring: full integration of L1 objects into the DQM data-processing workflow

L1 Algo Triggers C ^ :					
☐ Name Bit ↓		Pre-DT Rate Before Prescale [Hz]	Pre-DT Rate After Prescale [Hz]	Post-DT Rate [Hz]	
511	L1_ZDC512_OR	11245.50	112.46	112.28	
510	L1_ZDC256_OR	11246.44	112.46	112.29	
509	L1_ZDC0_OB	11620.26	116.20	115.98	
508	L1_Z0C512_AND	11238.38	112.38	112.21	
507	L1_ZDC256_AND	11244.87	112.45	112.27	
506	L1_ZDC0_AND	11245.44	112.45	112.28	
505	L1_ZDCM512	11238.38	112.38	112.21	
504	L1_ZDCM256	11244.95	112.45	112.27	
503	L1_ZDCM1	11273.89	112.74	112.56	
502	L1_ZDCP512	11245.50	112.45	112.28	
501	L1.ZDCP256	11246.37	112.46	112.28	
500	L1.ZDCP1	11591.81	115.92	115.70	



L1 isolated tau efficiency as a function of offline tau p_T

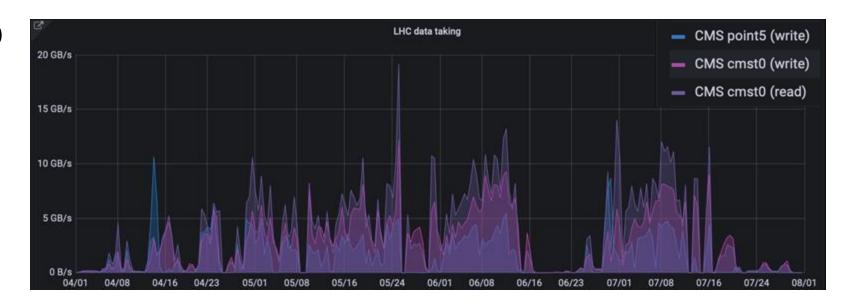


https://twiki.cern.ch/twiki/bin/view/CMSPublic/ HighLevelTriggerRunlIIResults

- Good data taking quality in 2023 from trigger point of view, in challenging conditions (peak pileup ~64)
 - 2023 target L1 rate 110 kHz, HLT output: ~2.5 kHz prompt, ~3.5 kHz parking, and ~25 kHz scouting
- Enhancement of Scouting and Parking strategies in Run 3 in general
 - New parking streams in 2023 dedicated to VBF, LLP, and HH

Muon Scouting: a modified version of the Particle Flow at HLT (based on pixel-only tracks) with pixel tracking on GPU allowed a higher L1 input rate

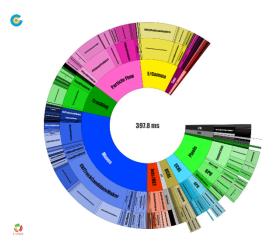
Better performance of ParticleNet tagging and lowered H_T cut (360 GeV to 280 GeV) at the L1 trigger lead to a higher trigger efficiency on the full spectrum of the m_{HH}



Delayed jet triggers utilize the ECAL timing information to identify jets produced by the decay of LLPs

Computing

- Higher instantaneous luminosity than last year
 - pileup of 62 during the levelling period
- Average input data rate to the Tier-0 of 4.7 GB/s and output of 6.5 GB/s in July before the end of the proton-proton run, effectively doubling the 2022 rates.
- By seamlessly extending the processing capacity of the Tier-0 into the Run 2 HLT Cloud resources when needed, CMS was able to promptly reconstruct the ~2.5 kHz rate from the HLT as well as the ~3.5kHz of parking data streams.
- Successfully (re)tested prompt reconstruction at the Tier-1's serving as a "safety valve"



Offline Software

MadGraph >

- CMS worked with the developers of MadGraph to improve the I/O performance of the generator workflow:
 - Optimized initialization step of the gridpacks by size reduction and by hosting it in read-only CVMFS, still in validation
- Geant4 11 has been integrated into the currently open software release
 - Better code performance
 - The physics performance is being assessed
- Following the experience of online reconstruction at the HLT with offloading up to 40% processing to GPUs, goal is to be able offload 10% of the offline event reconstruction to GPUs by the end of the year
- Preparation for an eventual physics validation on ARM architecture, once sufficient resources become available
 - Nightly integration builds on ARM for many years already

DP-2023-004

Physics results

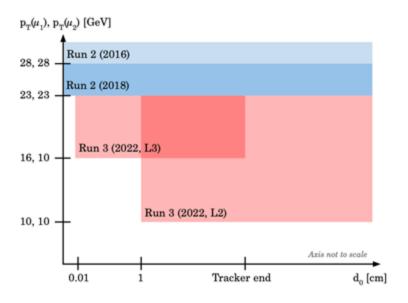
33 analyses:

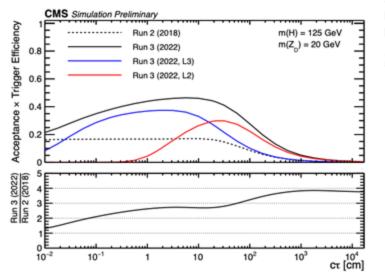
• 2IS, 2LP, 5 BOOST, 18 EPS, 4QM

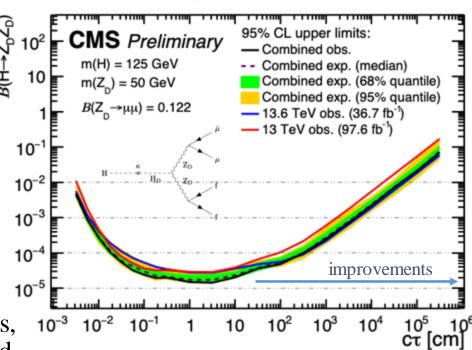
https://cms.cern/news/cms-summer-physics

https://indico.desy.de/event/34916/contributions/142207/

EXO	Search for neutral long-lived particles decaying in the muon system (DT, CSC and combination)				
EXO	HNL de caying in the Muon System				
EXO	multijet res using s couting				
EXO	Leptoquarks (2nd gen)				
EXO	NP w/ >1 dis pl. ve rtex and MET		EXO-22-020		
EXO	Search for displaced dimuons - Run3 result	Run3	EXO-23-014		
HIG	Boos ted H->tautau		HIG-21-017		
HIG	H->bb boosted in VBF/ggF				
HIG	ttH(bb)				
HIG	Anomalous couplings in H->WW				
HIG	Higgs mass/widthin H->ZZ->4l				
HIN	Two Particle Correlations in 13 TeV pp collisions				
HIN	Net-charge fluctuations in PbPb collisions at 5.02 TeV				
HIN	Measurement of the groomed jet radius and girth of jets recoiling from isolated photons in ppandPbPb				
HIN	Measurement of f0(980) in pPb collisions at 8 TeV				
HIN	Ps eudorapidity distributions of charged hadrons in PbPb collisions at 5.36 TeV				
HIN	Extracting the speed of sound in the strongly-interacting matter created in relativistic nudear collisions				
HIN	Differential multiplicity studies on B+ Production in pPb collisions at 8.16 TeV				
HIN	B mes on spectra in pp collisions and nuclear modification factors in PbPb at 5.02 TeV				
мио	Performance of CMS muon reconstruction in heavy-ion collisions				
BTV	AK8 jet calibration for boosted X-> bb/cc				
ТОР	Search for extra Higgs bosons through same-sign top-quark production in association with an extrajet				
SMP	Measurement of energy correlators inside jets				
SMP	Nonres. exclusive production of charged had. pairs				
SMP	W/Zat5&13TeV				
SMP	Jet a zi muth. corr. & a lpha_s				
SMP	Studies of Z>4I				
SMP	ss WW VBS (w/ tau)		SMP-22-008		
SMP	W/Z at 13.6 TeV	Run3	SMP-22-017		
B2G	BB->bZbH dilepton + tWbH + combination		B2G-20-014		
B2G	Single T->tH(bb), resolved all-hadronic channel, 5 jets with 3 b tags				
ВРН	RK				
ВРН	RJPsi leptonic				
LUC	Conon Sossion 12 Santambar 2022		16		




Search for Long Lived Particles


Run3

First Run 3 search for new physics: inclusive search for long-lived exotic particles decaying to a pair of muons

• Using 36.7 fb⁻¹ data taken in 2022, selecting muons originating from a common secondary vertex spatially separated from the primary interaction point by distances ranging from several hundred µm to several meters.

Substantial improvements in efficiency as compared to the Run 2 analysis, particularly at low masses and long lifetimes, mainly because of improved triggers for displaced muons and analysis refinements

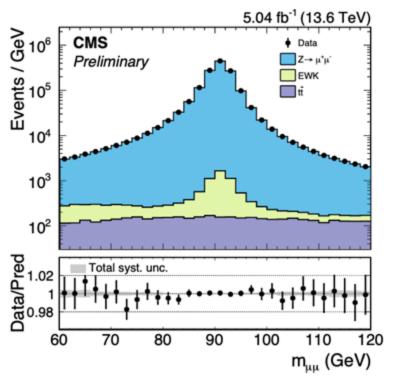
Limits set for two benchmark models: the hidden Abelian Higgs model and SUSY

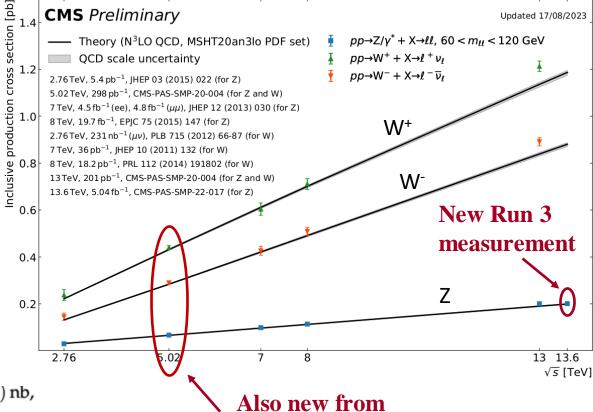
Z boson cross section @ 13.6 TeV

SMP-22-017

Run3

 $pp \to Z/y^* + X \to \ell\ell$, 60 < $m_{\ell\ell}$ < 120 GeV


 $pp \rightarrow W^+ + X \rightarrow \ell^+ \nu_\ell$


 $pp \rightarrow W^- + X \rightarrow \ell^- \overline{\nu}_{\ell}$

Updated 17/08/2023

Measurement of the Z boson production cross section in proton-proton collisions at 13.6 TeV

• Using 5.04 fb⁻¹ data from 2022 with 2 identified muons

Summer 23 results

 $(\sigma_{\rm tot}\mathcal{B})_{\rm measured} = (2.010 \pm 0.001 ({\rm stat}) \pm 0.018 ({\rm syst}) \pm 0.046 ({\rm lumi}) \pm 0.007 ({\rm theo}))~{\rm nb}$, $(\sigma_{\rm tot}\mathcal{B})_{
m predicted} = (2.018 \pm 0.012 ({
m PDF})^{+0.018}_{-0.023} ({
m scale}))\,{
m nb}$,

for the invariant dimuon mass in the range 60 to 120 GeV

CMS Preliminary

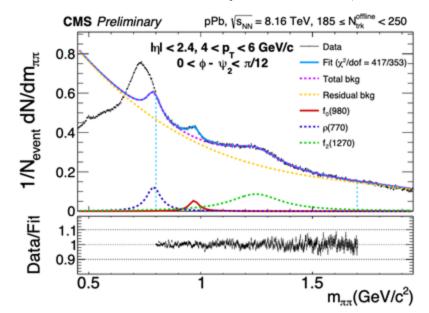
QCD scale uncertainty

2.76 TeV, 5.4 pb⁻¹, JHEP 03 (2015) 022 (for Z) 5.02 TeV, 298 pb⁻¹, CMS-PAS-SMP-20-004 (for Z and W) 7 TeV, $4.5 \, \text{fb}^{-1}$ (ee), $4.8 \, \text{fb}^{-1}$ ($\mu\mu$), JHEP 12 (2013) 030 (for Z)

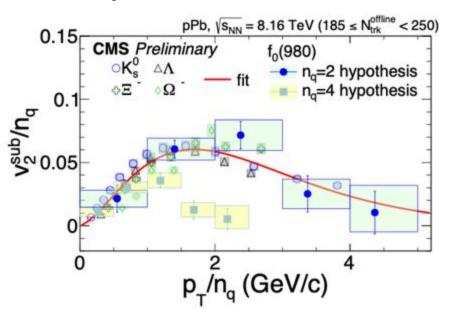
Theory (N3LO QCD, MSHT20an3lo PDF set)

Evidence of $f_0(980)$ quark-antiquark composition

via elliptic flow anisotropy measurement


HIN-20-002

pPb data

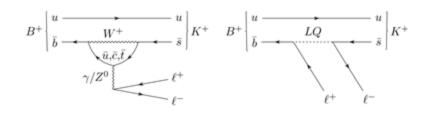

- Discovered half century ago, the quark content of the $f_0(980)$ hadron has not been settled till now
- The elliptic flow (v2) anisotropy of hadrons formed in heavy ion collisions inherit those of the constituent quarks and scales with the number of constituents

$$\frac{\mathrm{d}N_{\mathrm{h}}}{\mathrm{d}\phi} \propto \left(\frac{\mathrm{d}N_{\mathrm{q}}}{\mathrm{d}\phi}\right)^{n_{\mathrm{q}}} \propto \left[1 + \sum_{n=1}^{\infty} 2v_{n,\mathrm{q}} p_{\mathrm{T}}^{\mathrm{q}} \cos(n[\phi - \psi_{n}])\right]^{n_{\mathrm{q}}}$$
$$v_{n}(p_{\mathrm{T}}) = n_{\mathrm{q}} v_{n,\mathrm{q}}(p_{\mathrm{T}}/n_{\mathrm{q}})$$

 $\mathbf{f_0}(980)$ is reconstructed via the invariant mass of its main decay channel $(\pi^+\pi^-)$

The number of constituents of $f_0(980)$ is **consistent with 2**

7.7 σ away from being a tetraquark state or KK molecule, or 6.3 σ (3.1 σ) if considering only restricted p_T range up to 8 GeV (6 GeV)

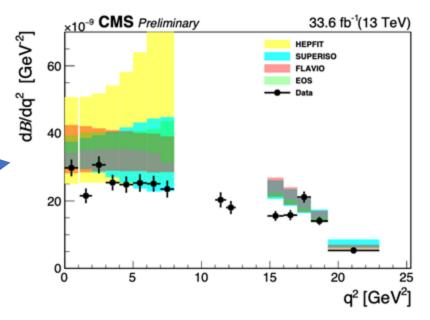


LFUV tests in $B^+ \rightarrow K^+ l^+ l^-$

• BSM can modify the branching ratio $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$

B-parking dataset (expanding CMS Physics Program)

taken with a special trigger and storage strategy that collected ~10⁹ unbiased sample of B hadron decays during 2018

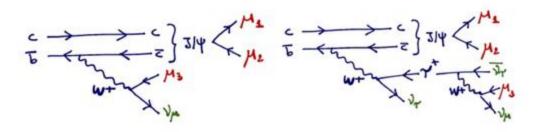

Measure:

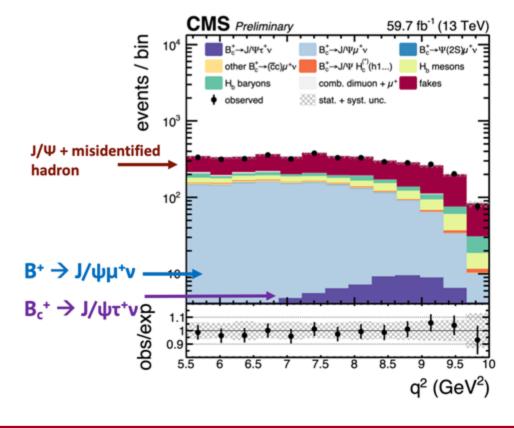
- branching fraction of the $B^+ \rightarrow K^+ \mu^+ \mu^-$ decay in the low-q²
 - comparable precision to the present world average
- differential BR of the $B^+ \rightarrow K^+ \mu^+ \mu^-$ decay in a full q^2 range
- R(K) in the low, $1.1 < q^2 < 6.0$ GeV range:

$$\frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)(q^2)}{\mathcal{B}(B^+ \to J/\psi(\mu^+ \mu^-)K^+)} \bigg/ \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)(q^2)}{\mathcal{B}(B^+ \to J/\psi(e^+ e^-)K^+)}$$

$$R(K) = 0.78^{+0.46}_{-0.23} (stat)^{+0.09}_{-0.05} (syst) = 0.78^{+0.47}_{-0.23}$$

 $R(K) = 0.78^{+0.46}_{-0.23} \text{ (stat)}^{+0.09}_{-0.05} \text{ (syst)} = 0.78^{+0.47}_{-0.23} \rightarrow \text{in agreements with the SM expectation within } 1\sigma$

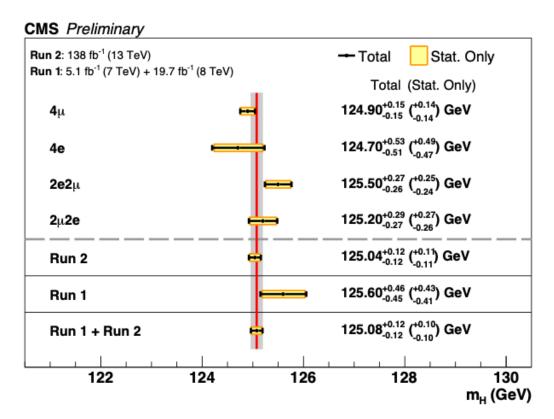



LFUV tests in $B^+_c \rightarrow J/\psi \ \tau^+ \ v_\tau$

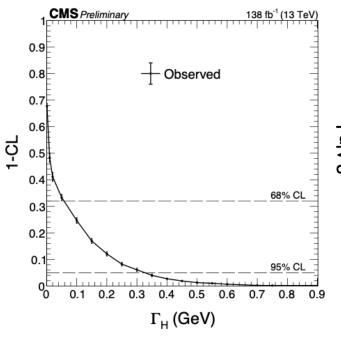
Measure:

- Ratio of branching fractions: $R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \, \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \, \mu^+ \nu_\mu)}$
- Considering only $J/\psi \rightarrow \mu^+\mu^-$ decays
 - Similar final state for signal processes $(3 \mu + vs)$
 - → disentangle exploiting:
 - large mass difference between τ and μ
 - presence of 3 v versus 1 v

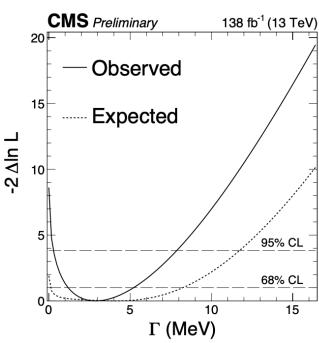
Most important fake background: From form factors J/Ψ + misidentified hadron (strong dependence on q^2) $R(J/\psi) = 0.17^{+0.18}_{-0.17} \text{ (stat.)}^{+0.21}_{-0.22} \text{ (syst.)}^{+0.19}_{-0.18} \text{ (theo.)} = 0.17 \pm 0.33$ in agreement with the SM expectation within 0.3σ



Higgs boson mass and width measurements


HIG-21-019

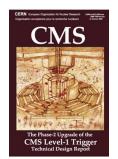
$H \rightarrow 4\ell$ decay channel using the full Run2 LHC dataset


 $m_H = 125.08 \pm 0.10 \text{ (stat)} \pm 0.05 \text{ (syst) GeV}$

Most precise single channel measurement to date!

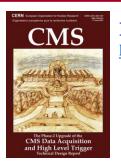
On-shell Higgs width

95% CL upper limit: 0.33 GeV obs. (0.75 exp.)



Off-shell Higgs width

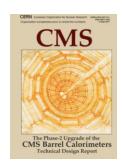
Extracted width: $\Gamma_{\rm H} = 2.9^{+2.3}_{-1.7}\,{\rm MeV}$ Consistent with SM and confirms previous results

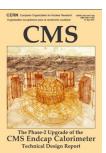

The CMS Phase 2 Upgrade

L1-Trigger

https://cds.cern.ch/record/2714892

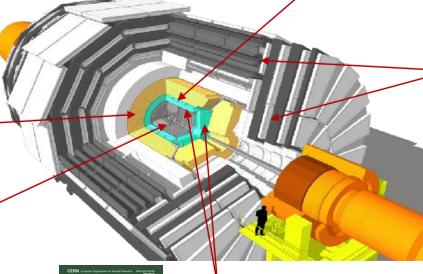
- Tracks in L1-Trigger at 40 MHz
- Particle Flow selection
- 750 kHz L1 output
- 40 MHz data scouting


DAQ & High-Level Trigger https://cds.cern.ch/record/2759072


- Full optical readout
- Heterogeneous architecture
- 60 TB/s event network
- · 7.5 kHz HLT output

https://cds.cern.ch/record/2283187

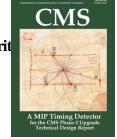
- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards



Calorimeter Endcap

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS



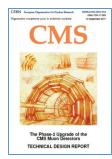
Tracker

https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularit
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

MIP Timing Detector

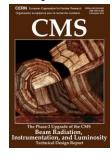
https://cds.cern.ch/record/2667167

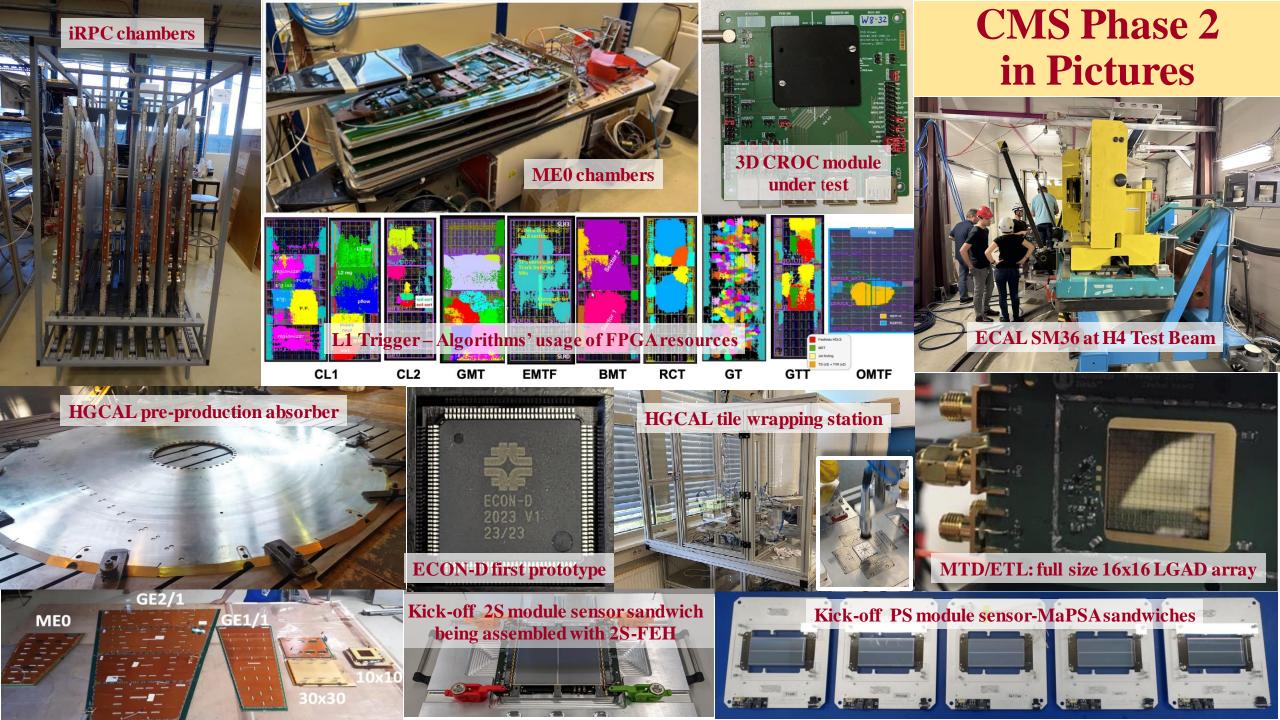

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Muon systems

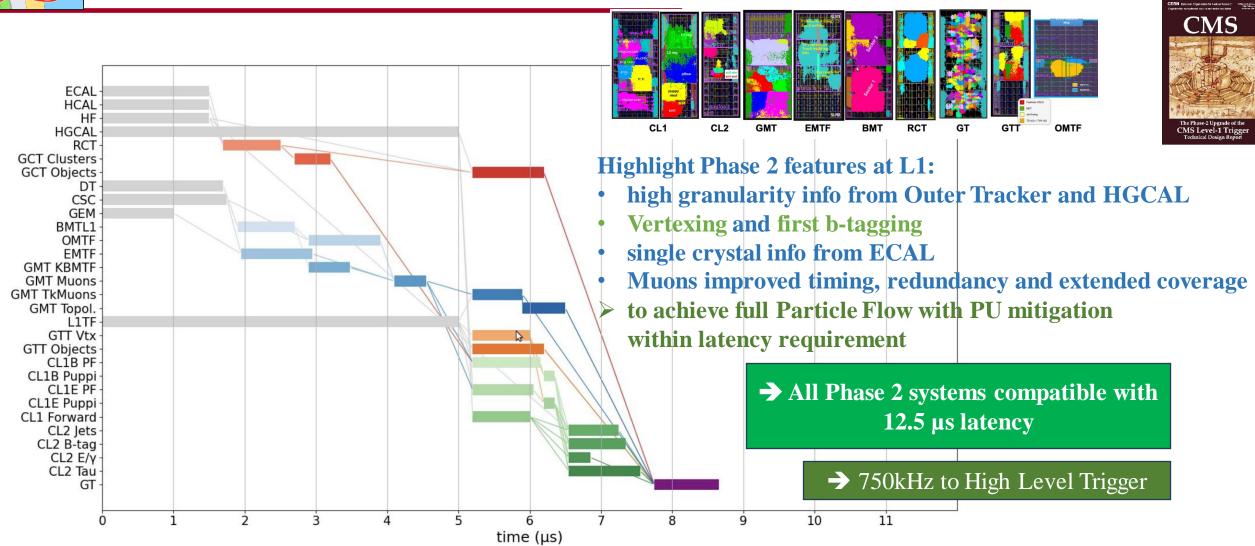
https://cds.cern.ch/record/2283189


- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC $1.6 < \eta < 2.4$
- Extended coverage to $\eta \simeq 3$



Beam Radiation Instr. and Luminosity

http://cds.cern.ch/record/2759074


- Beam abort & timing
- Beam-induced background
- Bunch-by-bunch luminosity: 1% offline, 2% online
- Neutron and mixed-field radiation monitors

Story of the month: Level-1 Trigger excellent progress

Level-1 Trigger latency – preliminary, based on algos in **firmware in test systems**

CMS Phase 2 Highlights

Successful Fraunhofer project schedule-"speed-up"

• BRIL

- FBCM FE-ASIC (1st prototype) back from foundry imminently
- Adapted Neutron Monitor strategy now Tetra Ball as Bonner Sphere

Tracker

- OT: hybrid kickoff most of batch received
- OT: MaPSA pre-production started
- IT: ready for EDR in October
- IT: Final RD53 ASIC v12 timing closure achieved verification almost finished

HGCAL

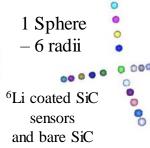
- Silicon Sensors low density sensors in pre-production high quality
- SiPM and Scintillator PRR passed
- Submitted final FE-ASIC HGROC delayed at companies; ECON ASICs on track
- CE-H machining completed of first full, final absorber disk

• Muons:

• First ME0 prototype stack successfully tested with muons and with high background at GIF++

• **MTD**

- Ready for BTL EDR in September
 - FE-ASICS back; LYSO pre-production; SiPM tendering finished
- ETL: Test beam verification of LGADs bump-bonded to ETROC2 imminent
- L1T, BCAL, DAQ progressing smoothly



Vobelstraße 12 70569 Stuttgart

sensors

FBCM: Fast Beam Condition Monitor

EDR Engineerign Design Review – LHCC Step-III

PRR Procurement Readiness Review

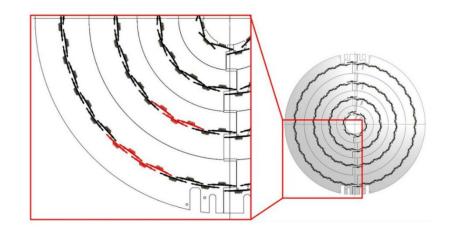
MaPSA MacroPixel Sub-Assembly

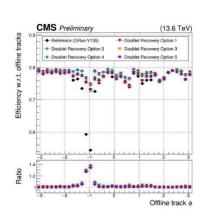
Summary and Outlook

- Run 3 data taking was challenging for both the average pileup and sustained operation at record high pileup
 - All detectors as well as trigger and offline reconstruction coped well
 - Pushed the L1 and HLT output rates and the Tier-0 processing rates to unprecedented values
- Building on the experiences from last year, data-taking was smooth and efficient this year
- Improved physics reach by exploiting new triggers in both L1 and at HLT
- Several new results in physics from Run 2 shown in the Summer conferences, still some in the pipeline. Run 3 results also started to appear profiting from the trigger enhancements
- The Phase 2 projects are making good progress moving from prototyping to production

Tracker

Layers 3 & 4 of BPix- Sector 7 have lost QPLL lock

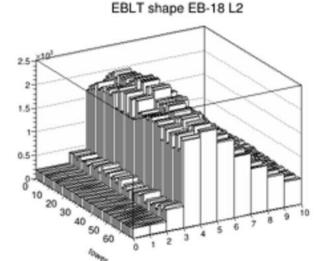

- Occurred shortly before the LHC magnet incident
- Recovery attempts have been unsuccessful
- 27 associated modules have been masked, corresponding to a region spanning $\sim 24^{\circ}$ in φ

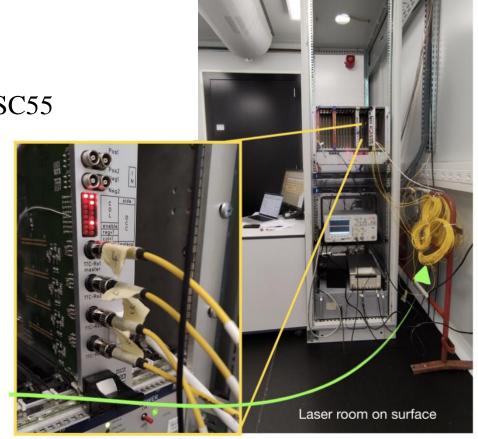

Tracking Impact


- HLT : mitigation is crucial
 - Efficiency partially recovered via pixel doublets used to seed an additional tracking iteration
 - Fake rate contained by using doublets from which no triplets can be constructed
- Offline : no further mitigation without increasing fake rates
 - Offline efficiency in the φ -region will be comparable to the online, ~80%

We presently do not intend to access

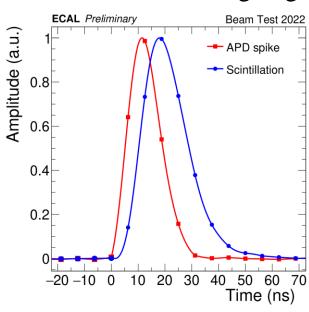
- Thus far no indication of a growing problem
- Access carries inherent risk, requiring the removal of Fpix, BRIL, services, etc.
- Would be a major intervention and would impact CMS plans for YETS
- We will continue to monitor the situation closely



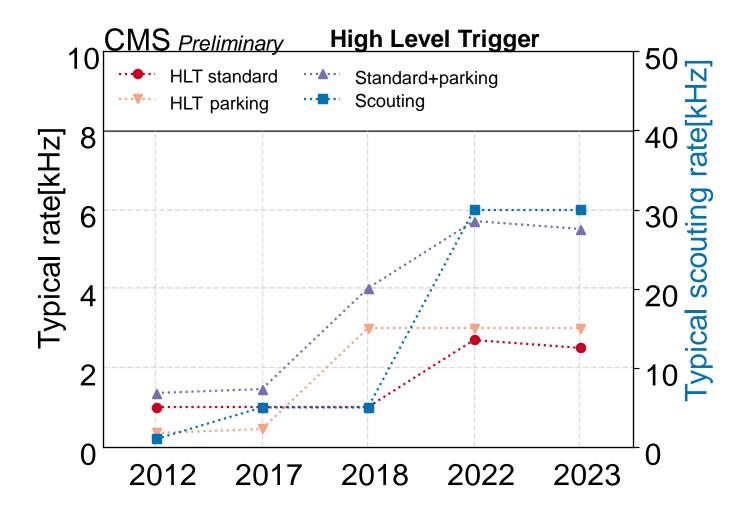


ECAL Laser Lab Relocation

- Installation of the CO2 cooling plant for HL-LHC requires relocation of the ECAL laser lab
- Laser system is essential to precisely monitor radiation damage that affects crystal transparency
- Pilot Run took place during June Technical Stop
 - All trigger fibers have been tested and work
 - Laser pulse shape from surface compatible with shape from USC55
 - Identified and addressed issues with temperature and humidity stability in the new lab
- New, more powerful green laser, is currently being commissioned
 - Required to compensate for further radiation-induced transparency loss and increased attenuation from the relocation


ECAL Upgrade

- ASICs Status: CATIA (preamplifier) & LiTE-DTU (digitization, compression, and transmission) have been submitted; CATIA wafers are now at CERN
- Front-End: v3.3 passed all functional tests, minor improvements identified for production version
- Irradiation tests at CERN CHARM Facility (4 26 July): full readout tower irradiated at high fluences to study SEU rates and APD dark current evolution
- H4 Test Beam Campaign (19 July 2 Aug): spare SM36 equipped with new electronics for 9 readout towers (each with 25 channels), including new CATIA and 2 BCPs; tested full readout while collecting data for timing alignment, timing resolution, and energy resolution; analysis of data from 2022 and 2023 test beams on-going

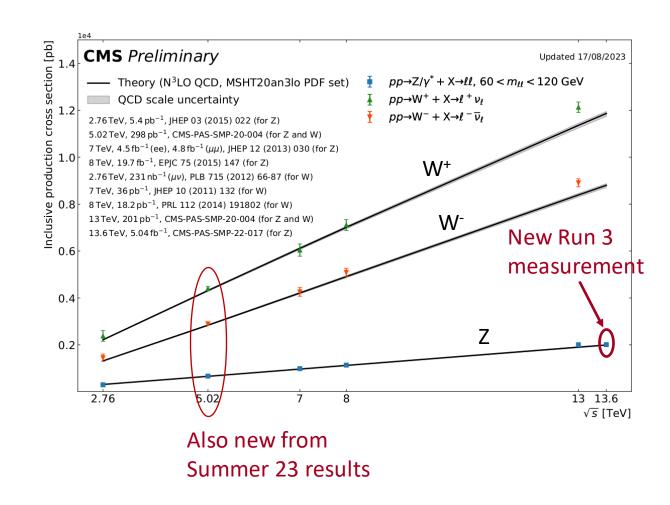


CMS trigger in Run 3

L1 Trigger:

- Enhanced menus for higher PU than Run 3 nominal (50)
- Extended trigger capabilities for specific physics topics: $B_s \rightarrow \mu\mu$, $\tau \rightarrow 3\mu$, HH \rightarrow 4b, W $\rightarrow 3\pi$, VBF, longlived particles (with HCAL timing)




Z boson cross section @ 13.6 TeV

Run3

Measurement of the Z boson production cross section in proton-proton collisions at 13.6 TeV

Figure 5: Comparisons of the fiducial cross sections and cross section ratios between measurements and the theoretical calculations from DYTURBO with different PDF sets at 13 TeV. The uncertainties in the theoretical predictions include the statistical uncertainty, and the PDF, α_s , and renormalization and factorization scale uncertainties. The measured values and theoretical predictions (DYTURBO with NNPDF 3.1 as the example) are also shown in the right part of the plot.

