Observation of gravitational free-fall of antimatter with ALPHA-g at CERN and future development with HAICU at TRIUMF

Andrea Capra on behalf of the ALPHA Collaboration

2024 CAP Congress

• Hydrogen is the best known physical system

both theoretically,

e.g., H. A. Bethe and E. E. Salpeter, *Quantum mechanics of one and two-electron atoms* (1977) and experimentally,

e.g., Atomic Data and Nuclear Data Tables 96, 586-644 (2010)

- Hydrogen-antihydrogen spectra comparison ⇒ test CPT invariance violation
- Measurement of antihydrogen gravitational acceleration ⇒ search for deviations from the Universality of Free-Fall (WEP)

 \overline{H} = antihydrogen

Gravity and WEP

🕂 🤁 🗞 TRIUMF

The Einstein's Equivalence Principle underpins the idea *curved spacetime*

EEP = LLI + LPI + WEP Living Rev. Relativity, 17, (2014)

- Group of coordinate transformation is the symmetry in GR
- Weak Equivalence Principle: All bodies (particles and *antiparticles* alike) fall with the same acceleration in a terrestrial laboratory.
- Quantum gravity and Grand-Unification models suggest that EEP is violated at some level.

arxiv:gr-qc/0103067v1 arxiv:1006.4106v2

ALPHA Collaboration

 ${\sim}55$ people from 18 institutions in 9 countries

https://alpha.web.cern.ch/

Antimatter Factory @ CERN

Microwave Spectroscopy Laser Spectroscopy Gravity ASACUSA, ALPHA GBAR, ALPHA AEGIS, GBAR, ALPHA-g

ELENA is the new decelerator: 100 keV \overline{p}

https://espace.cern.ch/elena-project

A view of ALPHA-2 and ALPHA-g

A. Capra and the ALPHA collaboration (TRIUMF)

The ALPHA-g Experiment

Illustration by Sandbox Studio, Chicago with Steve Shanabruch

- Produce and trap H
- Controlled release
- Detection of population (annihilation) vs. position

Goals:

 Measure H gravitational acceleration to 1% precision

The ALPHA-g Magnets System

Credit: C. So

Vertical \overline{H} trap for gravity measurement

Double-ended design to minimize systematic

Confinement due to superposition of magnetic fields

$$\label{eq:hardenergy} \begin{split} \overline{H} \text{ magnetic dipole moment} \\ |\boldsymbol{\mu}_{\overline{H}}| \sim \mu_{B} \approx 6 \times 10^{-11}\,\mathrm{MeV}\,\mathrm{T}^{-1}. \end{split}$$

Magnetic field gradient used to trap \overline{H} : $\nabla B \sim \Delta B \approx 0.8 \,\mathrm{T}$

Only "cold" \overline{H} can be trapped! $\Delta U \sim \mu_B \Delta B \approx 0.5 \,\mathrm{K} \approx 50 \,\mu\mathrm{eV}$

Only $\mu_{\overline{H}}$ anti-parallel to **B** can be **confined** by U-minimum **low-field** seeker

Antihydrogen Synthesis

- e^+ and \overline{p} confined in a Penning trap
- \overline{H} formation in three-body recombination process: $e^+ + e^+ + \overline{p} \rightarrow \overline{H} + e^+$

 \bullet e⁺ and \overline{p} in nested well.

- 2 Align of potential wells [left]
- 3 e^+ - \overline{p} mixing [right]

PhotoCredit: ALPHA

Phys. Rev. A **69** 010701 (2004) Phys. Rev. A **70** 022510 (2004) J. of Phys. B **41** 192001 (2008)

Antihydrogen Stacking

Recent Progress in Antihydrogen Trapping

Electron Cyclotron Resonance technique

• Temperature increase near cyclotron resonance $\frac{eB}{2\pi m_0}$ New J. Phys. 16, 013037 (2014)

Precision related to peak width

electrons axial motion

Broad, asymmetric sidebands from

• B field map by rapid repetition of ECR

Phys. Plasmas 27, 032106 (2020), Rev. Sci. Instrum. 91, 103502 (2020)

The ALPHA-g Detectors

- Position sensitive tracker detector \Rightarrow Time Projection Chamber
 - H annihilation detection/reconstruction
 - Radial design to minimize the effect of the external solenoid fringing field
 - rTPC entirely built at TRIUMF JPS Conf. Proc. 18 (2017)

2.3 m active length, 180 litres of Ar-CO₂, 256 sensing wires, 18688 channels

- Additional cosmic ray rejection \Rightarrow Barrell SCintillator (topic for another meeting)
- More on rTPC and annihilation reconstruction by A. Ferreira

Cosmic Rays Rejection

- Major source of background: cosmic rays \sim 70 Hz
- Boosted Decision Tree [TMVA arXiv:physics/0703039]

Credit: L. Golino and J.T. McKenna

A. Capra and the ALPHA collaboration (TRIUMF)

Antihydrogen Free-Fall

Article

Observation of the effect of gravity on the motion of antimatter

https://doi.org/	10.1038/s41586-023-06527-
Received: 6 Ma	y 2023
Accepted: 9 Au	gust 2023
Published onlir	e: 27 September 2023
Open access	
Check for up Check for up	odates
	a 🚊
	Sections ~

NEWS Science

#CBC MENU ~

Scientists drop antimatter to see if it falls

Antimatter is influenced by gravity just like matter, ALPHA-g experiment finds E. K. Anderson¹, C. J. Baker², W. Bertsche^{3,462}, N. M. Bhatt², G. Bonomi³, A. Capra⁶, I. Carll⁶, C. L. Cesar⁷, M. Charlton⁷, A. Christensen⁶, R. Collister⁶, A. Cridland Mathad⁷, D. Duque Guiceno^{6,9}, S. Eriksson⁷, A. Evans^{6,0}, N. Evett⁸, S. Fabbr^{1,10}, J. Fajans^{85,7}, A. Ferwerda¹¹, T. Friesen¹², M. C. Fujiwara⁶, D. R. Gill⁶, L. M. Golino², M. B. Gomes Gonçalves⁷, P. Grandemange⁶, P. Granum¹, J. S. Hangst¹⁵³, M. E. Hayden¹⁰, D. Hodgkinson³⁴, E. D. Hunter⁴, C. A. Isaac², A. J. U. Jimenez⁴, M. A. Johnson³⁴, J. H. Jones⁴, S. A. Jones⁴, S. Jones^{41,8}, J. Desell⁸, A. Khramov^{6,414}, N. Madsen⁷, L. Martin⁶, N. Massacret⁶, D. Maxwell², J. T. K. McKenna¹³, S. Menary¹¹, T. Momose^{6,407}, M. Mostamand⁶¹⁷, P. S. Mullan²¹⁸, J. Nauta², K. Olchanski¹⁶, A. N. Oliveira¹³, J. Peszka³¹, A. Powell¹⁷, C. Ø. Rasmussen¹⁸, J. Foisheaux⁷⁰, R. L. Sacramento⁷, S. Stracka²⁴, G. Stutter¹²⁵, T. D. Tharp²⁶, K. A. Thompson⁷, J. I. Singh³, G. Smith⁶⁹, C. So⁶, S. Stracka²⁴, M. Urion⁶, P. Woosaree¹² & J. S. Wurtele⁸

= LeMonde

🐵 Se connecter

SCIENCES · PHYSIQUE

Des chercheurs démontrent que l'antimatière ne « tombe » pas vers le haut

Une équipe internationale a observé, pour la première fois, le comportement d'antiatomes en chute libre. La gravité, connue pour attirer les masses de matière ordinaire entre elles, n'est pas répulsive pour l'antimatière.

Par David Larousserie

ALPHA-g & HAICU

EXPLAINER Features | Science and Technology

Gravity test: Antimatter falls down, but where did it all go?

From Star Trek to PET scans, antimatter has thrilled 27/05/2024

- H accumulation for 4 hours resulting in about 100 trapped atoms
- Long Octupole rampdown
- Measurement of the on-axis field (with Electron Cyclotron Resonance technique)
- Mirror coil linear rampdown in 20 s
- Measurement of the on-axis field (ECR)

Escape Curve

Future Direction: ALPHA-g Measurement at 1%

- Improve knowledge of magnetic field to 10⁻⁶ T
- More magnetometry to reduce systematics
- \overline{H} cooling to increase sensitivity (escape-curve slope)
- Slower H release (slower coils ramp down)

Ċ

3

nirror coi

H trap and

Laser Cooling

Doppler cooling on $|1S,d\rangle \rightarrow |2P_a+\rangle$

Stacking while cooling (9h) and additional cooling (6h), then spectroscopy (2h)

The HAICU experiment at TRIUMF

Hydrogen-Antihydrogen Infrastructure of Canadian Universities

• Platform to develop atomic manipulation techniques on H to apply to \overline{H}

- loffe-Pritchard Trap (same as ALPHA but with quadrupole)
- Normal conducting magnets
 - Bitter coils (current flows through sheets of conductors)
- |B| = 0.15 T at trap centre
- Max |B| = 0.376 T
- See talk G. Wankling later in this session

• Current status:

- Optimization of H source at UBC
- Decelerator is being built at UBC
- Bitter coils prototyping at TRIUMF
- Quadrupole assembly at TRIUMF

- Short terms goals:
 - Wall-free trapping of hydrogen
 - Laser cooling in 3D
- Long term goals:
 - Sample in metastable 2S state
 - Raman spectroscopy
 - Hydrogen fountain
 - Ramsey-Bordé Interferometry
 - ...

- H is a well-established tool for testing fundamental symmetries, i.e., CPT invariance and Weak Equivalence Principle (WEP)
- The ALPHA experiment at CERN/AD is leading way to precision \overline{H} test
- First successful gravity experiment with ALPHA-g at CERN/AD
- New hydrogen experiment HAICU in preparation at TRIUMF

Additional Material

Cosmological model: Standard Big Bang with Hubble law confirmed by, e.g., CMB measurement

 $\begin{array}{ll} & \text{SM prediction:} \\ & \frac{\text{Baryon}}{\text{Photon}} \sim 10^{-18} & \frac{\text{Baryon}}{\text{Antibaryon}} \sim 1 \\ & \text{Observation:} \\ & \frac{\text{Baryon}}{\text{Photon}} \sim 6 \times 10^{-10} & \frac{\text{Baryon}}{\text{Antibaryon}} \sim 10^4 \\ & & \text{Planck 2018 results, arXiv:1807.06209v4} \\ & & \text{WMAP 9 Years. arXiv:1212.5225v3} \end{array}$

Many orders of magnitude discrepancy!

In abstract: every theory with

- an Hermitian Hamiltonian $\mathcal{H} = \mathcal{H}^{\dagger}$
- local operators \$\mathcal{O} = \mathcal{O}(\mathbf{x}, t)\$, constructed from spin zero, one-half and one fields
- usual connection between spin and statistics is valid, i.e., fermion fields anticommute $\{\psi_i, \psi_j\} = \delta_{ij}$
- products are normally ordered, i.e., $\psi_1^{\dagger}\psi_2^{\dagger}\psi_1\psi_2$

is **invariant** under the combined action of *parity reflection* P, *time reversal* T and *charge conjugation* C

G. Lüders, Annals Phys. 2 1-15 (1957)

 \Rightarrow Test of essential features of the Standard Model

- Natural linewidth of 1S-2S is \sim 0.001ppt of central frequency \Rightarrow Ideal for CPT tests!
- High-precision spectroscopy on hydrogen 4×10^{-15}

Phys. Rev. Lett. 107 203001 (2011)

- Recent advancements in \overline{H} experiments are closing the gap
 - Beam-based experiments, like ASACUSA or AEGIS
 - Trap-based experiments, like ALPHA or GBAR
 - Laser-cooling of H in ALPHA Nature 592 (2021)

CPT Tests

Phys. Rev. D 98 030001 (2018) ALPHA collab. Nature 557 71 (2018)

The ALPHA Apparatus

see "The ALPHA antihydrogen trapping apparatus", NIMA (2014)

A. Capra and the ALPHA collaboration (TRIUMF)

A **Penning trap** combines electric and magnetic fields to hold charged particles.

- $\overline{p}\,$ are slowed down through a *degrader* and cooled in a Penning trap by means of:
 - electron cooling
 - evaporative cooling Phys. Rev. Lett. 105 013003 (2010)
- $\overline{p}\,$ are compressed (radially) to minimize losses and maximize chances to recombine with e^+ : the rotating wall technique $_{Phys.~Rev.~Lett.}$ 100 203401 (2008)

Positrons Preparation

- e⁺ are emitted by a ²²Na radioactive source.
- e^+ are slowed down by a solid Ne moderator.
- e^+ are cooled by collisions with N₂. Phys. Rev. A 46 5696 (1992)
- e⁺ are prepared using SDREVC technique: evaporative cooling combined with rotating wall

Phosphor

Cryopump

screen

Antihydrogen Detection

The ALPHA tracker the Silicon Vertex Detector is used to:

- monitor H production
- perform physics measurements
 - Spectroscopic signal comes from H annihilation upon iteraction with radiation
 - Typically the transition from a trappable state to an un-trappable one

1S-2S Spectroscopy

 f_{d-d} = 2 466 061 103 079.4(5.4) kHz Consistent with CPT at 2 × 10⁻¹²

Nature 557 71 (2018)

$$2R_{\infty}hc = \alpha^2 m_e c^2$$

Since h and c are exact in the revised SI

- Measurement of 2 lines determines, e.g., R_{∞} , α , and constrains m_e
- Alternatively, measuring all three constants confirms the validity of the identity.

Reconstruction of rTPC

Spacepoints Reconstruction:

- e^- drift time \Rightarrow Radial coordinate
- Anode position \Rightarrow Azimuthal coordinate
- Charge induced on pads \Rightarrow Axial coordinate

A. Capra and the ALPHA collaboration (TRIUMF)

2/15

Uncertainties in the bias determination and in the determination of $a_{\overline{g}}$

"x-axis" uncertainty

Magnitude (g)	
0.07	
0.014	
0.009	
0.02	
0.02	
0.05	
-	

"y-axis" uncertainty

Uncertainty	Magnitude (g)
Finite data size	0.06
Calibration of the detector efficiencies in the up and down regions	0.12
Other minor sources	0.01
Modelling of the magnetic fields (on-axis and off-axis)	0.16
Antihydrogen initial energy distribution	0.03
	Uncertainty Finite data size Calibration of the detector efficiencies in the up and down regions Other minor sources Modelling of the magnetic fields (on-axis and off-axis) Antihydrogen initial energy distribution

Estimated uncertainty associated with the simulation includes the potential impact of various unmeasured quantities, such as magnet winding misalignment, off-axis persistent magnetic fields, and uncertainty in the energy distributions (longitudinal and transverse) of the trapped \overline{H} atoms.

