Neutrino Detectors for the DUNE Experiment

Deborah Harris York University/Fermilab On behalf of the DUNE Collaboration

deborahh@yorku.ca May 31th, 2024

CAP Congress 2024, London, Ontario

Introducing DUNE

- Observing Neutrinos @1300 km baseline
 - unambiguously measure mass ordering
 - Search for Charge ParityViolation
 - Rigorous test of the oscillation framework!

• Broad Energy Spectrum, both v and \bar{v} separately

40 ktons of LAr far detectors a mile underground

liquid argon detectors

- near and far LAr TPC detectors
- higher resolution, higher efficiency \rightarrow less mass needed
- enables wide band beam physics

 serve as a underground neutrino observatory with sensitivity to neutrinos from astrophysical sources (solar, atmospheric, supernova burst) and BSM physics

Image Landsat / Copernicus

Why study neutrinos over 1300km? To study three Generation Mixing w/leptons

- Matrix described by 3 mixing angles
- Featuring a CPviolating phase δ !
- This phase would imply neutrinos and antineutrinos oscillate differently
- Similar to quarks but WAY LESS diagonal, CPviolating effects may be large

3

as Mass Eigenstates! $s_{ij} = \sin \theta_{ij}$, and $c_{ij} = \cos \theta_{ij}$ $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Reactor and/or Accelerator

Fermilab

Weak Eigenstates are NOT the same

D. Harris | Neutrino Detectors for DUNE | May 31, 2024 4

What is in 1300km of Earth?

• Electrons in the earth act on v_e and v_{e} 's differently from each other, and from v_{μ} or v_{τ}

> Wolfenstein, PRD (1978)

e⁻ density

 $2\sqrt{2G_F}n_{e^2}$

Oscillations in vacuum:

• For 2 generations...

Oscillations in Matter: $\sin^2 2\Theta_M = \frac{\sin^2 2\Theta}{\sin^2 2\Theta + (\pm x - \cos 2\Theta)^2}$ $L_M = L \times \sqrt{\sin^2 2\Theta + (\pm x - \cos 2\Theta)^2}$ -

 $P(v_{\mu} \rightarrow v_{\tau}) = \sin^2 2\theta \sin^2 \left(\frac{(m_2^2 - m_1^2)L}{4E}\right)$

Bad news: this complicates search for CP violation, Good news: it means you can measure the mass ordering

W⁻

e

3-generation $v_{\mu} \rightarrow v_{e}$ **Probabilities**

D. Harris | Neutrino Detectors for DUNE | May 31, 2024

- $P(\nu_{\mu} \rightarrow \nu_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$ $P_{1} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$ $P_{2} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2}$ $P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$ $P_{4} = \mp J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$
- Much more complicated than 2-generation mixing
- Interference between atmospheric and solar terms is where CP violation arises
- Size of that interference is function of all angles
- Measurement at one L and E is not enough!

Minakata & Nunokawa JHEP 2001

Appearance of v_e in a v_μ beam: circa 2020

Two currently-running experiments have most of their v_e and \overline{v}_e statistics in narrow range of energy

Fermilab YORK

6

Neutrino vs Antineutrino Appearance @ DUNE

Statistics after staged running, nearly equal protons on target in both v and \bar{v} mode

20

2

5

6 **Reconstructed Energy (GeV)**

- assuming a beam ramp-up to 1.2 MW, 2 FDs, normal ordering, $\delta_{CP}=0$
- expected range is 70-180 $v_{\rm e}$ events in v mode, depending on true MO, CP

Neutrino Interactions, 20 words or less

- Optics analogy: the wavelength of your probe determines what you can see
- High energy neutrinos can transfer more momentum, which means they can see smaller structure (quarks), and make more particles

Liquid Argon Time Projection Chamber

D. Harris | Neutrino Detectors for DUNE | May 31, 2024

10

Liquid Argon Time Project Chambers in Practice...

- Proof of principle from MicroBooNE
 - Sitting in a 1GeV neutrino beam
 @ Fermilab
 - Several new processes studied on Argon
 - Particle ID available from looking at energy deposits along tracks
 - Fine granularity allows for low tracking thresholds
- More to come!
 - SBND, ICARUS
- S. Zeller, Fermilab JETP seminar

. . .

DUNE Far Detectors (Phase I)

- We have excavated caverns for 4 detector modules in South Dakota and are now building 2 far detector modules, each 17 kton of liquid argon (10 kton fiducial mass)
 - Horizontal Drift (like ICARUS, MicroBooNE)
 - Vertical Drift (capitalizing on dual phase development)

• Order of magnitude more mass than has been deployed up to now from all LAr detectors

Beam test of Far Detector Technologies: ProtoDUNE

Prototypes of 2 DUNE far detector (FD) modules at CERN

- Horizontal drift (HD) technology
- Vertical drift (VD) technology
- ProtoDUNE HD is an 800t active mass TPC
- ProtoDUNE HD successfully operated in 2018 and is preparing for its second run now (ProtoDUNE-II)

13

ProtoDUNE Horizontal Drift detector

Anode module called APAs:

- Anode Plane Assembly
- Anode wire planes, electronics, and frame
- Light collection modules embedded behind anode
 - Several technologies tested in ProtoDUNE-I

Cathode module called CPAs:

- Cathode Plane Assembly
- Vcathode = -180 kV

14

ProtoDUNE Horizontal Drift

ProtoDUNE Vertical Drift

Vertical drift technology:

- Charge readout plane (CRP) houses the anode planes, electronics, and frame.
- Dimensions 3 x 3.4 m²
- Anode of drilled PCBs with etched strips
 - More robust than wires
- 3 anode planes at varying angles {-30°,+30°, +90°} wrt. beam
- X-ARAPUCA embedded in cathode

Anode 1 + Shield

3000 mr

Charge Readout Unit_ (CRU)

ProtoDUNE Vertical Drift

- Very low electronic noise
- 2 top Charge Readout Planes +
 2 bottom CRPs
 (For Detector will have 0 + 00 OD)
 - (Far Detector will have 2 x 80 CRPs)
- 2x3m drift distance
 - (Far Detector will have

2x6m drift distance)

ProtoDUNE Measurement Program

Large scale prototypes are mandatory for:

- Integration test with 1:1 components
- Assess the LArTPC technology performance

Detector physics:

- LArTPC detector physics
- Calorimetry with charged particles
- Evaluations of photon detectors in liquid argon

Ar-hadron interactions, Electromagnetic showers, and Cosmic physics:

- Hadron-argon interactions with pions, protons, and kaons.
- Including total and exclusive cross sections
- dE/dx with charged particles, including electromagnetic showers.
- Michel electron energy reconstruction
- Seasonal variations of cosmic-ray muons

Far Detector Prototyping Tests

- Getting physics out of these prototypes through their exposure to the CERN testbeam
- Not only testing the technology but also providing vital calibration measurements + important e,π,K re-scattering data on argon

Stringent test of DAQ in beam and cosmic rays

Eur. Phys. J. C82, 903 (2022)

ProtoDUNE Horizontal Drift: Results!

Oct.~Nov. 2018: Beam data

- hadrons with momenta 0.3 ~ 7 GeV/c
- 4×10⁶ triggered events
- H4-VLE beamline instrumented with Time of Flight and Cherenkov counters for Particle Identification

Nov. 2018 ~ Jan. 2020: Cosmic data

- Random and cosmic ray trigger
- Tests of detector performances & stability

Feb. 2020 ~ Jul 2020:

- LAr doped with 20 ppm Xe
- Test of light yield increase

Stay tuned: New Beam time approved by CERN for both Horizontal and Vertical Drift technologies

pion-Argon inelastic cross section

proton-Argon inelastic cross section

20

Expected Event Rates @ DUNE

- From Far Detector Technical Design Report: if there is no CP violation other than the electrons in the earth...two options: normal or inverted mass ordering. (NO or IO)
- Staged increase in detector mass and proton power

	Expected events (3.5 years staged per mod		
	u mode	$\bar{ u}$ mode	
ν_e Signal NO (IO)	1092 (497)	76 (36)	
$\bar{ u}_e$ NO (IO)	18(31)	224 (470)	
Total Signal NO (IO)	1110 (528)	300 (506)	
Beam $ u_e + \bar{ u}_e $ background	190	117	
NC background	81	38	
$ u_ au+ar u_ au$ CC background	32	20	
$ u_{\mu} + ar{ u}_{\mu} CC background$	14	5	
Total background	317	180	

With hundreds of appearance events in each mode, systematics will matter!

- Using two detectors to measure oscillations precisely:
 - Near detector sees beam before oscillations
 - Far detector measures beam after oscillations
 - Ideally, near and far detectors made of same material (Ar)
 - Correct for 1/r² of beam, solve for oscillation

YORK UNIVERSITÉ

Fermilab

Current collections of v_e and \bar{v}_e appearance?

- T2K: Eur.Phys.J.C 83 (2023) 9, 782: 94+14 ν_e QE-like+π production candidates in neutrino mode, and 16 ν
 _e QE-like candidates
- NOVA: Phys.Rev.D 106 (2022) 3, 032004, 82 v_e candidates in neutrino mode, and 33 \overline{v}_e candidates

T2K, Eur. Phys. J. C (2023) 83:782	Sample		Uncertainty source (%) Flux Interaction FD + SI + PN		Flux⊗Interaction (%)	Total (%)	
DUNE will need 3x lower systematic uncertainties to be as statistics dominated as T2K is now	1Rµ	$\frac{v}{v}$	2.9 (5.0) 2.8 (4.7)	3.1 (11.7) 3.0 (10.8)	2.1 (2.7) 1.9 (2.3)	2.2 (12.7) 3.4 (11.8)	3.0 (13.0) 4.0 (12.0)
	1Re	$\frac{v}{v}$	2.8 (4.8) 2.9 (4.7)	3.2 (12.6) 3.1 (11.1)	3.1 (3.2) 3.9 (4.2)	3.6 (13.5) 4.3 (12.1)	4.7 (13.8) 5.9 (12.7)
	1Re1de	v	2.8 (4.9)	4.2 (12.1)	13.4 (13.4)	5.0 (13.1)	14.3 (18.7)

Current T2K uncertainty on integrated event rates with (without) the near detector constraints

Near Detector Complex

- Where? ND hall is located 550m from proton target, 65m deep, on-site at Fermilab
- Why? measure the rate & spectrum of v's before oscillations, check beam stability.

DUNE Near Detector Complex

Moveable LArTPC system

- ND-LAr: novel LArTPC with pixelated readout and 70 optically isolated TPC volumes
- TMS: spectrometer for momentum and charge measurement of v_µ-CC muons exiting ND-LAr
 PRISM: ND-LAr + TMS

system moves up to 28.5m (2.8°) off-axis

- Multi-purpose on-axis magnetized detector
 - SAND: Straw tube tracker with Argon target inside KLOE superconducting solenoid

Why Move a Near Detector?

- Because pion decays to v_{μ} are 2-body decays, neutrino energy determined by angle between pion direction and v_{μ} direction, and pion energy.
- Different off axis angles give you different incoming neutrino spectra
- One angle is "sweet spot" which is what T2K, HyperK, and NOvA use
- But sampling at many angles gives you many different near fluxes
- This will help inform the relationship between true neutrino energy and visible energy
- You can make "whatever incoming spectrum you want" by linear superpositions of data taken at different angles

Liquid Argon TPC Near Detector

- 7x5 grid of 1x1x3 m³ LArTPC modules
 - 7x5x3 m³ active volume
- Designed to cope with high-pileup environment
 - ~60 interactions / 1.2 MW spill
- Optical segmentation provides
 interaction-level timing information
- Native 3D readout from pixelated charge readout mitigates hit ambiguity
 - >14M pixel channels!

1.2MW Proton power: welcome to Neutrino Pileup!

~60 neutrino interactions per beam spill in Liquid Argon TPC

From Wires to Pixels: in practice

- Have built four 20% scale modules for Liquid Argon TPC Near Detector, tested their performance with cosmic rays @ Bern
- Mapping out pixel response: 4mmx4mm pixels, checking our ability to simulate this new detection technique

Neutrino Test of Near Detector Strategy

- Moving beyond tests of cosmic rays
- Want to test strategy in operating neutrino beam
- Fermilab is already home to most intense neutrino beam in the world
- Also reusing MINERvA detector planes for "fast tracker"
- Plan to take data this month!
- 4 modules
- 2.6 tons of "active" Argon

Fermilab YORK

D. Harris | Neutrino Detectors for DUNE | May 31, 2024

Summary

- DUNE has an ambitious program to measure neutrino oscillations across broad range of energies
- Use fully active Liquid Argon TPC detector
- Expected statistics means we need to reduce systematics below current generation of experiments
- Near Detector Suite at Fermilab:
 - Moveable Liquid Argon TPC with pixels not wire planes
 - On Axis Neutrino Beam Monitor (SAND)
 - Lots of exciting data on prototypes:
 - CERN test beam on Prototypes of Horizontal and Vertical drift
 - Neutrino Beam on Prototype of Liquid Argon Near Detector

Merci Thank you

On Axis Near Detector

- Need to make sure that the beamline is producing neutrinos with the same spectrum for 7+ years!
- Liquid Argon TPC will not always see the same flux if it's moving, that's the point
- Need detector with well-known technology to stay in one place for the entire run
- SAND: straw tube tracker with passive targets for mass for neutrino detection: bonus of cross section measurements
- Repurposed KLOE Detector
- All in a magnetic field so we can get on axis mix of v and \bar{v}

9 CH₂ MODULES

Modularity also reduces pileup...

- LArTPC charge readout very slow compared to beam microstructure
- Leverage scintillation light readout for timing information: must match charge to light

Modularity also reduces pileup...

- LArTPC charge readout very slow compared to beam microstructure •
- Leverage scintillation light readout for timing information: must match charge to light 0

Simulated energy deposits from 1.2 MW LBNF Beam Spill in ND-LAr

DUNE v_e and \bar{v}_e spectra

NO sin ${}^{2}\theta_{23} = 0.44$

DUNE FD V.

ProtoDUNE Upgraded Horizontal Drift Plans

Improved HD design:

- Updated APA, CPA and cold electronics designs
- 4 APAs to match the field cage-cryostat distance of the FD module
- 2 APAs upside down with the electronics at the bottom
- Light collection modules: X-ARAPUCA technology chosen
- Test new calibration systems
 - Neutron source, laser, 207Bi sources, temperature sensors along the APAs

Beam time approved by CERN

Running at ± 1 GeV:

- **Negative polarity -1 GeV** for π^- studies that weren't taken with protoDUNE-I (1 week in mid June)
- 1 GeV beam, best match of energy of hadrons produced in DUNE neutrino interactions
- More data for differential XS measurements and improved inclusive XS results (5 weeks in July-Aug)
 - Proton, π^- , π^+ differential XS with different final states

DUNE Plan for Phased Construction

- LBNF/DUNE Phase I:
 - Full near + far site facility and infrastructure
 - Upgradeable 1.2 MW beam
 - Two 17kt LArTPC modules
 - Movable LArTPC near detector (ND-LAr) with muon catcher (TMS)
 - On-axis near detector (SAND)
- DUNE Phase II:
 - Two additional Far Detector modules
 - Beam upgrade to >2MW
 - More capable Near Detector

