

Radioactive Molecules Novel Probes for New Physics

Stephan Malbrunot-Ettenauer TRIUMF, University of Toronto

CAP conference 2024

Discovery, accelerate

Table of Elements80 chemical elements

2

(with stable nuclides)

Permanent Electric Dipole Moments (EDM)

• local separation of the electric charge along a particle's spin axis

• implies time-reversal (T) violation \Rightarrow violation of CP symmetry

matter-antimatter asymmetry in the universe

Complementarity of different probes

Molecular

Complementarity of different probes

Molecular

enha	ncement fa	actors for	differen	t mol. E[DM cont	ributions
State	Term Symbol	$W_{S}/\frac{e}{4}$	$W_{\rm d}/{10^{24}{ m Hz}}$	$W_{s}/h \mathrm{kHz}$	$W_{ m T}/h{ m Hz}$	$W_{\rm M}/\frac{10^{33}h{ m Hz}}{2}$

State	Term Symbol	$W_S/\frac{1}{4\pi\epsilon_0 a_0^4}$	$W_{\rm d} / \frac{1}{e \rm cm}$	W _s /nkhz	$V V_{\rm T}/n$	$1Z W_{\rm M} / \frac{1}{c \ e {\rm cm}^2}$
HfF^+	$^{3}\Delta_{1}$	-15000	6.4	23	-1200	0.57
ThO	$^{3}\Delta_{1}$	-35000	24	140	-3500	1.4
PaF^{3+}	$^{2}\Phi_{5/2}$	-72000	0.66	4.2	-6700	0.038
					—	
						R. Berger et al.

Complementarity of different probes

Schiff Theorem

nuclear dipole moment
hielded by electrons' dipole moment
how moment
how

Assumptions:

- non-relativistic electrons
- a point nucleus the electrons

Schiff Theorem

nuclear dipole moment
hielded by electrons' dipole moment
how moment

Assumptions:

- non-relativistic electrons
- a point nucleus the electrons

!! octupole deformation !!

... for searches for CP violation in atomic nuclei

¹⁹⁹Hg present 'gold standard' for limit on nuclear Schiff moment

|S_{Hq}| < 3.1 · 10⁻¹³ e fm³ *B. Graner et al., Phys. Rev. Lett.* 116, 161601 (2016)

Enhancement factors in our approach:

- octupole deformed nuclide x 100-1,000
 in polar molecule x 1,000-10,000
 compared to ¹⁹⁹Hg

• in atom or ion trap x 1,000 compared to beam experiments

all known cases in radionuclides

... for searches for CP violation in atomic nuclei

¹⁹⁹Hg present 'gold standard' for limit on nuclear Schiff moment

• in atom or ion trap x 1,000 compared to beam experiments

all known cases in radionuclides

Example: ²²³FrAg

intrinsic enhancement of 10⁷ compared to ¹⁹⁹Hg

V. V. Flambaum and V. A. Dzuba. Phys. Rev. A 101, 042504 (2020) T. Fleig. private communications with D. DeMille (2022)

need to be produced at TRIUMF

RadMol

a radioactive molecule lab for fundamental physics

Goal:

- dedicated laboratory for radioactive molecules 7
- to host 3 experimental stations
- precision studies for searches for new physics
- Molecular EDM with unprecedented sensitivity to nuclear Schiff moments
- provision for expansions into other fields

TRIUMF advantages:

- large variety in radioactive ion beams (RIB)
- high beamtime availability (3 RIBs)
- existing laboratory space am

Current Canadian Team:

12 faculty and staff physicists

8

Electronic level (1000 cm⁻¹ \sim 1400 K \sim 0.1 eV) \rightarrow Vibrational manifold (600 cm⁻¹ \sim 800 K)

- \rightarrow Vibrational manifold (600 cm⁻¹ ~ 800 K)
- \rightarrow Rotational manifold (1 cm⁻¹ ~ 30 GHz ~ 1 K)

227ThF+molecule

half-life: ≈19 days

- \rightarrow Vibrational manifold (600 cm⁻¹ ~ 800 K)
- \rightarrow Rotational manifold (1 cm⁻¹ ~ 30 GHz ~ 1 K)
- \rightarrow Nested hyperfine (100 MHz 1 GHz ~ 3 30 mK)
- → Parity doublets, Stark, Zeeman (10 100 MHz)

227ThF+molecule

half-life: ≈19 days

- \rightarrow Vibrational manifold (600 cm⁻¹ ~ 800 K)
- \rightarrow Rotational manifold (1 cm⁻¹ ~ 30 GHz ~ 1 K)
- \rightarrow Nested hyperfine (100 MHz 1 GHz ~ 3 30 mK)
- → Parity doublets, Stark, Zeeman (10 100 MHz)

227ThF+molecule

half-life: ≈19 days

Electronic level (1000 cm⁻¹ ~ 1400 K ~ 0.1 eV)

- \rightarrow Vibrational manifold (600 cm⁻¹ ~ 800 K)
- \rightarrow Rotational manifold (1 cm⁻¹ ~ 30 GHz ~ 1 K)
- \rightarrow Nested hyperfine (100 MHz 1 GHz ~ 3 30 mK)
- → Parity doublets, Stark, Zeeman (10 100 MHz)

Ions typically produced/cooled to ~10 K \Rightarrow distributed across multiple J (and finer structures).

227ThF+ experiment

9

molecular structure of ²³²ThF⁺ known from spectroscopy at JILA

K.B. Ng et al. Phys. Rev. A 105, 022823 (2022)

access to ²²⁷Th via ²²⁷Ac sample from TRIUMF life sciences

Multidisciplinary

Multidisciplinary

10

General theme for experiment:

translate high-precision AMO techniques into accelerator lab

Exemplary topics for today:

- Formation of ionic molecules
- Cooling of ionic molecules

Molecular formation@TITAN

Molecular formation@TITAN

Time of Flight / us

'Highly' charged radioactive molecules

CeF²⁺ in TITAN cooler-buncher

CeF²⁺ in TITAN cooler-buncher

Conclusions:

- CeF⁺² successfully formed
- Excellent prospect for ThF⁺²

Atomic physics techniques at RIB facilities

high precision and accuracyK. Blaum, et al., Phys. Scr. T152, 014017 (2013)P. Campbell et al., Prog. Part. and Nucl. Phys. 86, 127-180 (2016)J. Dilling et al., Annu. Rev. Nucl. Part. Sci. 68, 45 (2018)accurate,
but not precisein asses• masses• RIB preparationsbut precise• isotope shifts

- mass separation
- in-trap decay

• optical pumping

atom traps

- in-trap decay
- laser spectroscopy
- APV

strong programs at TRIUMF: FrNPC, TITAN, TRINAT, TRILIS, collinear LS precise,

but not accurate

Atomic physics techniques at RIB facilities

high precision and accuracy K. Blaum, et al., Phys. Scr. T152, 014017 (2013) P. Campbell et al., Prog. Part. and Nucl. Phys. 86, 127-180 (2016) J. Dilling et al., Annu. Rev. Nucl. Part. Sci. 68, 45 (2018) precise, accurate. but not accurate but not precise ion traps laser spectroscopy atom traps hyperfine structure • in-trap decay masses isotope shifts RIB preparations laser spectroscopy optical pumping mass separation APV in-trap decay Challenges short half-lives low intensity temperature purity buffer gas cooling $R=m/\Delta m > 5.10^{6}$ $T_{1/2} < 10 \text{ ms}$ masses: 0.5 ions / h (selected cases of $(\Delta m/m = 6.10^{-8})$ limited ion capacity M. Block et al., Nature laser cooling) 463, 785 (2010) M. Smith et al., PRL 101, S. Eliseev et al., PRL 110, E. Minaya Ramirez et al., 202501 (2008) 082501 (2013) Science 337, 1207(2012) 300 K

µK - mK - K

Doppler Cooling

- Powerful technique to reach sub-K atom and ion temperatures [1]
- Standard tool for high-precision measurements: atomic clocks [2], quantum information science [3], physics beyond the standard model [4]

Doppler Cooling

- Powerful technique to reach sub-K atom and ion temperatures [1]
- Standard tool for high-precision measurements: atomic clocks [2], guantum information science [3], physics beyond the standard model [4]

- [4] M. S. Safronova et al, Rev. Mod. Phys. 90, 025008 (2018).
- Specific applications with RIBs

G. D. Sprouse and L. A. Orozco, Annu. Rev. Nucl. Part. Sci., 47, 429 (1997) J. A. Behr et al., Phys. Rev. Lett. 79, 375 (1997). M. Trinczek et al., Phys. Rev. Lett. 90, 012501 (2003). L. B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004).

- P. A. Vetter et al., Phys. Rev. C 77, 035502 (2008). J. R. A. Pitcairn et al., RRC 79, 015501 (2009) A. Takamine et al., Phys. Rev. Lett. 112, 162502 (2014) B. Fenker et al., Phys. Rev. Lett. 120, 062502 (2018)
- unexplored as cooling technique to deliver high quality (molecular) RIBs

Goal: provide ultra-cold (molecular) RIBs

- ... compatible with short half-lives
- ... universally applicable (via sympathetic cooling)

Experimental results

S. Sels, F. Maier et al., Phys. Rev. Research 4, 033229 (2022)

Sympathetic cooling

- 'universal' availability of cold ion ensembles
- including ionic systems which cannot be directly laser-cooled

		0 ₂ +
Peak width residual-gas or buffer-gas cooling		113(5) ns
Sympathetic cooling		58(4) ns
Improvement in countrate Factor 2.6		
	S. Sels, F. Majer et al., Phys. Rev. Research 4.	033229 (2022)

Can be done better analogous to existing work, e.g. [1],[2]

19

J. Wuebbena et al, Phys. Rev. A 85, 043412,2012. [2] M. Guggemos. New Journal of Physics 17, 103001, 2015.

Neutral molecules: FrAg

- Schiff moment: intrinsic enhancement of 10⁷ compared to ¹⁹⁹Hg
- ultracold molecule assembled from laser-cooled Fr and Ag atoms
- confined in optical lattice
- ²²³Fr (T_{1/2}=22 min) at ISAC: 1.3 · 10⁷ ions/sec
- infrastructure and expertise at TRIUMF's Fr trapping facility
- first exp. goal: measurement of <u>Fr s-wave scattering length</u> (input for formation of Bose Einstein Condensate with Fr atoms)

Summary

UNIVERSITY OF

Collaboration Partners:

Radioactive Molecules

- entirely new science path
- intriguing & unexplored probes for New Ph, ics

RadMol

dedicated laboratory for radioactive molecules & precision studies at TRIUMF

initial focus: CP-violating nuclear Schiff moments

- octupole deformed nuclide
- in polar molecule
- In atom or ion <u>trap</u>
- requires multidisciplinary approach & technical developments (today: formation, cooling)

RadMol Collaboration

Institution	Department	Principal Investigators
TRIUMF	Physical Sciences	Behr, Holt, Malbrunot-Ettenauer, Kwiatkowski, Teigelhöfer
	Accelerator Division	Babcock, Charles
	Life Sciences Division	Radchenko
University of British Columbia	Physics&Astronomy	Madison
	Chemistry	Momose, Krems
University of Toronto	Physics	Vutha
University of Waterloo	Physics&Astronomy	Jamison
University of Manitoba	Physics&Astronomy	Gwinner
McGill University	Physics	Buchinger
University of Ottawa	Physics	Stolow
University of Chicago / USA	Physics	DeMille
University of Colorado, Boulder / USA	Physics	Cornell
University of Edinburgh	Physics&Astronomy	Reiter
University of Groningen / NL	Physics	Borschevsky, Hoekstra
Harvard University	Physics	Fan
Johns Hopkins University/USA	Chemistry	Cheng
Massachusetts Institute of	Physics	Garcia Ruiz
Technology / USA		
University of Maryland / USA	Physics	Orozco
University of Marburg / GER	Chemistry	Berger
Temple University / USA	Physics	Kotochigova

Acknowledgement

R. Simpson, I. Belosevic, A. Mollaebrahimi, C. Walls, C. Chambers, M. Au, P. Justus, C.Charles, L. Croquette, K.B. Ng, K. Madison, SME, A. Kwiatkowski and all members of the **RadMol** and **TITAN** and collaborations

I. Belosevic, L. Croquette, P. Fischer, C. Kanitz, F. Hummer, E. Leistenschneider,
 S. Lechner, F. Maier, P. Plattner, A. Roitman, M. Rosenbusch, S. Sels, F. Wienholtz,
 M. Vilen, R. Wolf, F. Buchinger, W. Nörtershäuser, L. Schweikhard, SME

European Research Council

% TRIUMF

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

