The MOLLER Experiment

Dr. Juliette Mammei
Why parity-violating electron scattering (PVES)?

- Search for physics *Beyond the Standard Model* (BSM) with low energy ($Q^2 << M^2$) precision tests complementary to high energy measurements

 - **Neutrino mass and their role in the early universe**
 - $0\nu\beta\beta$ decay, θ_{13}, β decay, ...
 - **Matter-antimatter asymmetry in the present universe**
 - EDM, DM, LFV, $0\nu\beta\beta$, θ_{13}
 - **Unseen Forces of the Early Universe**
 - Weak decays, PVES, $g_\mu-2$, ...

- **LHC new physics signals likely will need additional indirect evidence**
 - **Neutrons**: Lifetime, P- & T-Violating Asymmetries (LANSCE, NIST, SNS...)
 - **Muons**: Lifetime, Michel parameters, $g-2$, Mu$2e$ (PSI, TRIUMF, FNAL, J-PARC...)
 - **PVES**: Low energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)

- Study nuclear and nucleon properties
 - Strange quark content of nucleon
 - Neutron radii of heavy nuclei

May 2024
CAP Congress
\[A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

\[\approx \text{Quantity of interest} \]
Parity-violating electron scattering

Electrons interact via BOTH the E&M and weak forces, and is an example of identical particle scattering \(\Rightarrow \) cross terms

\[
\begin{align*}
\text{quantum mechanical operator that reverses the spatial sign (} P: x \rightarrow -x \text{)}

\end{align*}
\]

\[
\begin{align*}
\hat{h} &= \frac{\hat{s} \cdot \hat{p}}{|\hat{s} \cdot \hat{p}|}
\end{align*}
\]
100% Azimuthal acceptance possible

- Energy and scattering angle strongly correlated for mollers (eps are all ~11 GeV)
- Maximize azimuthal acceptance
 - identical particle scattering
 - accept COM angles around 90°
- Large energy and angle range to focus

Any odd number of coils will allow for 100% \(\varphi \) acceptance

![Acceptance defining collimator](image1)

- Energy and scattering angle strongly correlated for mollers (eps are all ~11 GeV)
- Maximize azimuthal acceptance
 - identical particle scattering
 - accept COM angles around 90°
- Large energy and angle range to focus

Any odd number of coils will allow for 100% \(\varphi \) acceptance

![Energy and scattering angle strongly correlated for mollers](image2)

- Energy and scattering angle strongly correlated for mollers (eps are all ~11 GeV)
- Maximize azimuthal acceptance
 - identical particle scattering
 - accept COM angles around 90°
- Large energy and angle range to focus

Any odd number of coils will allow for 100% \(\varphi \) acceptance

![Energy and scattering angle strongly correlated for mollers](image3)
How does PVES measure?

\[\sigma \propto \left[\begin{array}{cccc} e & \gamma & e & e \\ e & e & e & e \end{array} \right]^2 + \left[\begin{array}{cccc} e & \gamma & e & e \\ e & e & e & e \end{array} \right]^2 \]

\[= \left[\begin{array}{cccc} e & \gamma & e & e \\ e & e & e & e \end{array} \right]^2 + \hbar \omega \left[\begin{array}{cccc} e & \gamma & e & e \\ e & e & e & e \end{array} \right]^2 \]

\[A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \approx \frac{1}{2} \left[\begin{array}{cccc} e & \gamma & e & e \\ e & e & e & e \end{array} \right] \]

\[= E \frac{G_F}{\sqrt{2} \pi \alpha} \frac{4 \sin^2 \theta}{(3 + \cos^2 \theta)^2} Q_W^e \]
Measuring the electroweak couplings

The parity-violating (neutral weak) part of the Standard Model Lagrangian is

\[\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^\mu \gamma_5 e \left(C_{1u} \bar{u} \gamma_\mu u + C_{1d} \bar{d} \gamma_\mu d \right) + \bar{e} \gamma^\mu e \left(C_{2u} \bar{u} \gamma_5 \gamma_\mu u + C_{2d} \bar{d} \gamma_\mu \gamma_5 d \right) + C_{ee} \bar{e} \gamma^\mu \gamma_5 e \left(\bar{e} \gamma_\mu e \right) \right] \]

EM coupling: \(e \gamma^\mu \) (not parity violating)

The charged current violates parity maximally: \(\frac{g}{2\sqrt{2}} \gamma^\mu \left(1 - \gamma^5 \right) \)

The neutral current coefficients need to be determined:

\[\frac{g}{2 \cos \theta_W} \left(C_V^f \gamma^\mu - C_A^f \gamma^\mu \gamma^5 \right) \]

- Small \(\theta \): \(C_{1q} = 2 g_A^e g_V^q \)
- Large \(\theta \): \(C_{2q} = 2 g_V^e g_A^q \)
The Standard Model

Summarizes our knowledge of the fundamental particles and the interactions they can undergo.

The boxes enclose those particles that interact via a given force through the exchange of the associated boson.

Gravity is often mentioned as a fundamental force but is not actually part of the Standard Model.

https://webfest.web.cern.ch/content/standard-model-standard-infographic
Testing the Standard Model

Standard Model processes

Possible new exchange particle X

$Q^2 \rightarrow 0$

Measure coupling of new physics to electrons

$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$

Higher dimensional operators can be systematically classified...

Parameterize as a 4-fermion contact interaction

$\mathcal{L}^{PV}_{e_1 e_2} = \sum_{i,j=L,R} \frac{g_{ij}^2}{2\Lambda_{ij}^2} \bar{e}_i \gamma^\mu e_i \bar{e}_j \gamma^\mu e_j$

$\sqrt{|g_{RR}^2 - g_{LL}^2|} = 7.5 \text{ TeV}$

May 2024

CAP Congress
The whole accelerator is part of the experiment

\[A_{\text{meas}} = \frac{Y_+ - Y_-}{Y_+ + Y_-} \]
Measuring A_{PV} with ES – “step by step”

Precision polarimetry (Compton and Moller)

Beam property monitoring
Active feedback to minimize helicity correlations

Unpolarized target
High current, highly polarized beam

Both slow and rapid helicity reversals

Detector Signal
Helicity States

\[A_{PV} = \frac{A_{\text{sig}}}{P_{\text{beam}}} \]

\[A_{\text{sig}} = \frac{A_{\text{corr}} - A_{\text{back}} f_{\text{back}}}{f_{\text{sig}}} \]

\[A_{\text{corr}} = A_{\text{meas}} - \sum_{i=1}^{N} \frac{1}{2Y} \left(\frac{\partial Y}{\partial P_i} \right) \Delta P_i \]

Where $\Delta P_i = P_+ - P_-$

\[A_{\text{meas}} = \frac{Y_+ - Y_-}{Y_+ + Y_-} \]
Experimental apparatus

Integrating detector array
Tracking detectors
Spectrometer system
Beam monitors
Shielding
Target

Acceptance defining collimator

Full azimuthal acceptance for mollers from 6 < \(\theta_{lab} \) < 20 mrad
2.75 \(\leq E_{\text{scat}} \) \(\leq 8.25 \) GeV

\(E_{\text{beam}} = 11 \) GeV
\(I_{\text{beam}} = 65 \) \(\mu \)A
\(\mathcal{L} = 3 \times 10^{39} \text{cm}^{-2} \cdot \text{s}^{-1} \)
\(P_{\text{beam}} \geq 90 \pm 0.5 \% \)
1.25 m LH₂ target

particle envelopes along beamline
Pictures of magnetic spectrometer elements
Main detector array (CFI funded)

Array of 224 detectors

Allows for deconvolution of moller asymmetry from elastic and inelastic bkgds

Assembled in segments

- Red – “open”
- Blue – closed
- Green – transition

overlap azimuthally

simulated $N_{pe} = 27$

2D rate

rate (GHz/sep/uA/(5mm)^2) vs xy(mm^2)
Detector prototyping

CAD of a single module

Prototype testing at Mainz

GEANT4 optical photon simulations

Preliminary dry air flushing CFD study

Front-end electronics design is nearly final

PMT and preamp noise and bandwidth meet goals

May 2024

CAP Congress
Final Main Detector Module Design:

Module parts:

- Fused silica active volume (quartz)
- Air core light guide
- 3D printed housing parts
- Aluminum module structure parts
- PMT
- Front-end electronics
- HVMAPS module (+ readout)
- Light seal cover
Precision provides physics reach

\[
\frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} \approx 0.05 \frac{\delta A_{PV}}{A_{PV}} \implies \delta Q_W^e
\]

= 2.3%, \sim 5 \times \text{smaller than E158}

2.3% MOLLER uncertainty \rightarrow mass reach 7.5 to 27 TeV

(depending on the model of new physics)

MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider or neutrino factory.
Future – couplings and SM Tests

May 2024

CAP Congress
Summary and Outlook – MOLLER

- Fabrication has started for long-lead items
- Fabrication and qualification activity underway at Jlab
- Expect to launch rest of fabrication/procurement with ESAAB review in spring

- Will be ready for assembly mid-2025
- Ready for physics in fall 2026
- With an on-time start, you should expect the first physics publication in mid-2027

- Other experiments will continue to use PVES to “map out” the running of the weak mixing angle

MOLLER Collaboration

~ 160 authors, 37 institutions, 6 countries

K. Kumar: Spokesperson
R. Fair: Project Manager

Includes experience from E158, PREX, Qweak, PVDIS, HAPPEX, G-Zero

Current Canadian Group

10 faculty from U. Manitoba, U. Winnipeg, U. Memorial, UNBC
3 postdocs and 8 students
False asymmetries from helicity correlated beam properties

Average position differences at the target controlled to order \(\sim 10\) nm

\[
A = A_{raw} - A_Q - \sum_i \beta_i \Delta x_i - \beta E A_E
\]

The width of human hair is 50,000 nanometers!!!
Beam Correction Techniques

Multivariate Regression (A)

- χ^2 minimization
- Narrowest width
- Best statistical precision
- Slope diluted by monitor resolution

Beam Modulation (B)

- Spans phase space well
- Constrains sensitivities
- Best systematic accuracy
- Larger widths

Method of Lagrange Multipliers (C)

- “Hybrid” of regression and beam modulation techniques
- Best of both worlds
- Best precision given constraints on sensitivities

May 2024
CAP Congress
Data quality

- PREX 2
 - dominated by counting statistics
 - PREX 4GHz, 0.55ppm

- CREX
 - less challenging
 - 50 MHz (1% PREX)
 - larger asymmetry ~ 2 ppm

\[A_{\text{meas}} \Rightarrow A_{\text{corr}} \Rightarrow A_{PV} \Rightarrow F_W \Rightarrow F_{W,\text{skin}} \Rightarrow r_{\text{skin}} \]
Parity-violating electron scattering

Strong interaction uncertainties in other measurements, like HIC

with electron scattering – the probe doesn’t interact via the strong force
does interact via BOTH the E&M and weak forces

Electrons with different helicities “see” different potentials for the target, N, because of parity-violation in the weak interaction

\[q^2 = (k' - k)^2 \]

\[-q^2 = Q^2 = 4EE'\sin^2\theta \]

Elastic scattering
Assume LHC discovers a new spin 1 gauge boson with $M = 1.2 \text{ TeV}$

Halfway between SM and E158 central value,

MOLLER can distinguish between models

$\alpha = 0 \rightarrow E6 \text{ models}, \alpha \neq 0 \text{ describes kinetic mixing}$

$\beta = 0 \rightarrow SO(10) \text{(including those based on LR symmetry)}$
The MOLLER experiment is a >$40M USD experiment expected to run in 2026. This experiment has a large Canadian contribution, to both the spectrometer and detector systems. The experiment utilizes parity-violation in the weak interaction to measure the asymmetry between longitudinally polarized electrons in the positive and negative helicity states. The electrons scatter from electrons in liquid hydrogen, are collimated and bent through the spectrometer system to the main detector array. There are 224 integrating quartz detectors in the array. In addition there are a set of tracking detectors to study backgrounds and determine the acceptance. In fact, the whole accelerator is part of the experiment, with beam position and charge monitors throughout the beamline serving to study helicity-correlated backgrounds. In this talk I will describe the goals of the MOLLER experiment and its design and provide a status, in particular of the spectrometer and detector systems.
The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininewuk, Anisininewuk, Dakota Oyate and Denesuline, and on the National Homeland of the Red River Métis.

We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.
Parity

quantum mechanical operator that reverses the spatial sign (P: x -> -x)

\[\hat{p} \quad \hat{s} \]

\[h = \frac{\hat{s} \cdot \hat{p}}{|\hat{s} \cdot \hat{p}|} \]

We describe physical processes as interacting currents by constructing the most general form which is consistent with Lorentz invariance

Terms of the form \(\overline{\psi} \ (4 \times 4) \ \psi \) where \(\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3 \)

Scalar \(\overline{\psi} \psi \)

Pseudoscalar \(\overline{\psi} \gamma^5 \psi \)

Vector \(\overline{\psi} \gamma^\mu \psi \)

Axial Vector \(\overline{\psi} \gamma^\mu \gamma^5 \psi \)

Tensor \(\overline{\psi} \sigma^{\mu \nu} \psi \)

Note:

\(P \ (V*V) = +1 \quad P \ (A*A) = +1 \)

\(P \ (A*V) = -1 \)