β⁻ decay of ⁹²Rb Reactor Antineutrino Anomaly and Pygmy Dipole Resonance

Pietro Spagnoletti Simon Fraser University CAP Congress 2024 May 26th 2024

SFU

Reactor Antineutrino Anomaly (RAA)

- Nuclear Reactors play key role in neutrino physics
 - First Exp. observation of $\overline{\nu_e}$'s
 - Confirmed neutrino oscillation
 - Solution to the solar neutrino problem
 - Nonzero neutrino mixing angle $heta_{13}$
- RAA
 - Flux measurements disagree with improved theory calc.
 - Huber-Mueller Model (2011)
 - Summation method
 - "Missing" $\overline{\nu_e}$ flux $\rightarrow \overline{\nu_s}$???
 - Excess of $\overline{\nu_e}$ at 5 MeV

Reactor Antineutrino Anomaly (RAA)

• $\overline{v_e}$ flux

- measured via inverse β decay (IBD)
 - $p + \bar{\nu}_e \rightarrow n + e^+ [E(\bar{\nu}_e) > 1.8 \text{ MeV}]$
- Produced via β decay of fission fragments
- $\overline{v_e}$ energy spectrum
 - Dependent on β -decay properties
- $\overline{v_e}$ flux calculations
 - Requires robust β -decay data!
 - Much existing data is not.
 - Pandemonium effect!
 - Total Absorption Spectroscopy to the rescue.
- Decay Heat.
 - Reactor safety.

Pietro Spagnoletti

Total Absorption Spectroscopy

- Utilizes large volume scintillator detectors.
 - Calorimeter.
- Exploits high detection efficiency.
 - Free from *pandemonium*.
- Poor energy resolution.
 - Limited sensitivity to individual states.
- Analysis
 - Monte-Carlo simulations.
 - Level scheme split into two regions
 - Low energy with discrete states
 - Uses known branching ratios.
 - High energy bins
 - Statistical model for level densities, gamma-ray BR.
 - Gamma-ray multiplicity dependence.

Pietro Spagnoletti

 β^{-} data ⁹²Rb \rightarrow ⁹²Sr

- ⁹²Rb
 - $Q_{\beta} = 8095 \text{ keV}$
 - $J^{\pi} = 0^{-}$
- Dominant contributor of high-energy $\overline{v_e}$ flux
- ENSDF data from late 1970s.
 - High-Resolution Spectroscopy (HRS)
 - Using a few low-eff Ge(Li) detectors.
- Two new TAS studies
 - Zakari-Issoufou *et al* (2015)
 - Rasco et al (2016)
- Significant disagreement in β feeding
 - HRS: Pandemonium!
 - TAS: No fine structure information!
- Why is there large β feeding to high-energy levels?
 - B(GT) strength
 - $0^- \rightarrow 1^-$

Pygmy Dipole Resonance

10

 $\begin{array}{c} \text{Relative abundances} \\ \text{Relative abundances} \\ 10^{-3^{10}} \\ 10^{-4} \end{array}$

10

10

80 90

- Resonance-like structure of 1^{-} levels • situated low energy tail of the GDR.
 - Neutron-rich nuclei
- Exhausts few % of E1 strength of the • EWSR.
- Split into Isoscalar and Isovector • components.
- Interpretation •
 - GDR oscillation between • neutron and proton bodies.
 - PDR neutron skin oscillation
- What role do nuclear shell effects play? •
- Impacts. ٠
 - Nucleosynthesis. ٠
 - Nuclear Equation of State. ٠
 - Neutron stars. ٠

Pietro Spagnoletti

Probes for PDR

- Nuclear Resonance Fluorescence is the workhorse of PDR studies
 - Excellent excitation of 1⁻ levels.
 - Direct measurement of B(E1) values.
 - Only suitable for stable nuclei.
 - ⁹²Sr is not stable [T_{1/2} = 2.66(4) h].
 - Preferentially excites 1p1h states.
- β offers alternative probe of PDR
 - 92 Rb: J^{π} = 0⁻, Q_{β} = 8096 keV.
 - Strongly populates 2p2h states.
- Multi-messenger approach is best way to probe nuclear structure.

Scheck et al. Phys. Rev. Lett 116, 132501 (2016)

Experiment

- Performed at ISAC, TRIUMF
- 480 MeV protons on UC_x target.
 - ⁹²Rb from Surface Ion Source (SIS)
 - Yield: $\sim 10^9 \text{ pps}$
- Delivered to GRIFFIN
 - $\sim 10^6$ pps for ~ 10 hours
 - 15 HPGe Clover detectors
 - Anti-Compton shielding
 - ZDS: β -tagging
 - PACES: Conversion electrons
 - LaBr: Fast-timing

Results

- $\sim 1.6 \times 10^{11}$ decays occurred
 - Massive data set
 - Many, many, many γ rays
- Analysis
 - γ -ray singles
 - γ - γ and γ - γ - γ coincidences.
 - γ - $\gamma(\theta)$ angular correlations
- Identify γ rays below 0.01% intensity
 - Relative to strongest transition

⁹²SR Levels

- Early beta-decay studies from late 70s/early 80s
 - 17 excited states.
 - ~ 50 γ -ray transitions
- GRIFFIN
 - ~170 excited states populated!
 - Many levels in the PDR.
 - Strongly fragmented γ-decay strength.
 - ~ 850 γ -ray transitions!
 - Table of results
 - 15 pages
- May be the largest β -decay data collected.
 - Not verified.

Levels

- Early beta-decay studies from late 70s/early 80s
 - 17 excited states.
 - ~ 50 γ -ray transitions
- GRIFFIN
 - ~170 excited states populated!
 - Strongly fragmented γ-decay strength.
 - ~ 850 γ -ray transitions!
 - Table of results
 - 15 pages
- May be the largest β-decay data collected.
 - Not verified.

					Q ₆ =8.1 MeV					
	Level: New									
E_x (keV)	J^{π}	I_{β}^{Rel} (%)	I_{eta}^{Abs} (%)	$\log ft$	$E_{\gamma} (\text{keV})$	E_f (keV)	J_f^{π}	I_{γ}^{Rel} (%)	BR_{γ}	
6030.00(7)	$1^{\pm a,b,d}$	28.3(13)	0.21(3)	5.80(7)	931.0(3)	5098.9(2)	0,1,2	0.0141(15)	0.90(10)	
					1081.7(3)	4948.45(15)	1±	0.038(4)	2.5(3)	
					1220.5(7)	4808.39(9)	1±	0.017(3)	1.1(2)	
					1233.6(3)	4796.36(15)	1,2	0.057(5)	3.7(3)	
					1392.2(3)	4637.66(7)	1±	0.048(5)	3.1(3)	
					1415.9(4)	4614(3)	1,2	0.007(1)	0.48(7)	
					1519.7(3)	4510.3(3)	1,2	0.0091(13)	0.6(8)	
					1594.6(4)	4435.2(3)	1,2	0.0123(15)	0.80(10)	
40 γ-ray					1646.6(6)	4383.1(3)	1,2	0.0069(15)	0.50(10)	
					1652.4(3)	4377.54(18)	1,2	0.058(5)	3.8(4)	
transitions from					1873.1(4)	4156.9(3)	1,2	0.0087(12)	0.57(8)	
					1977.9(6)	4051.3(12)	0,1,2	0.018(3)	1.2(2)	
one level!					1985.5(3)	4044.44(17)	1,2	0.027(4)	1.8(3)	
					2044.6(4)	3985.16(18)	1,2	0.022(4)	1.5(3)	
	one				2053.0(3)	3976.99(12)	1,2	0.14(12)	9.2(8)	
					2135.8(4)	3894.09(11)	1,2	0.0071(16)	0.5(1)	
					2218.8(3)	3811.06(11)	1,2	0.037(6)	2.4(4)	
$\sum -chc(z + cc)$					2277.0(3)	3753.09(13)	1,2	0.042(4)	2.8(2)	
$\sum BR_{\gamma}^{ubs.}(I_{\gamma} < 1\%) = 11\%$				1 %	2337.6(4)	3692.27(13)	2+	0.045(7)	2.9(5)	
					2415.2(3)	3614.6(12)	0,1,2	0.092(7)	6(5)	
					2449.2(3)	3580.7(1)	1,2	0.077(8)	5.1(6)	
Ίγ					2473.7(3)	3556.3(1)	1±	0.29(2)	19.3(14)	
					2496.4(3)	3533.87(11)	2+	0.035(4)	2.3(3)	
					2563.1(3)	3466.67(11)	1,2	0.142(16)	9.3(11)	
					2682.2(3)	3347.8(1)	1,2	0.137(14)	9(9)	
					2911.1(3)	3118.9(1)	2+	0.89(9)	58(6)	
$\sum BR_{\gamma}^{abs.}(I_{\gamma} < 5\%) = 40\%$					2920.1(3)	3110.14(8)	1#	0.127(9)	8.3(6)	
					2984.2(3)	3045.9(1)	2+	0.201(13)	13.2(9)	
					3180.7(3)	2849.51(9)	2+	0.161(15)	11.0(10)	
-Inc					3209.4(4)	2820.7(7)	1±	0.034(4)	2.2(3)	
- γ					3247.2(4)	2783.44(8)	2+	0.022(3)	1.42(19)	
					3286.3(4)	2743.7(8)	2^+	0.067(6)	4.4(4)	
					3503.1(2)	2526.87(8)	0+	0.72(5)	47(3)	
					3889.7(4)	2140.58(7)	1+	0.096(8)	6.3(5)	
					3942.1(3)	2088.16(7)	0+	0.32(2)	20.7(16)	
					3976.8(3)	2053.65(9)	2+	0.064(5)	4.2(3)	
					4251.4(4)	1778.02(7)	2+	0.065(8)	4.3(5)	
					4645.4(4)	1384.5(6)	2+	0.144(13)	9.4(8)	
					5215.2(6)	814.61(6)	2+	1.53(12)	100(8)	
					6030.0(5)	0	0+	0.82(9)	54(6)	

Lovel Known

Shell-Model calculations

- Calculations by Marlom Ramalho
 - University of Jyväskylä
- ⁹²Sr (Z=38, N=54)
- ⁷⁸Ni closed core (Z=28,N=50)
 - 10 protons
 - π: 1f_{5/2}, 2p_{3/2}, 2p_{1/2}, 1g_{9/2}
 - 4 neutrons
 - ν : 1g_{7/2}, 2d_{5/2}, 2d_{3/2}, 3s_{1/2}, 1h_{11/2}
- 250 states up to 5 MeV
- Extrapolating to Q_{β} = 8095 keV window
 - 17,000 states

Pietro Spagnoletti

GRIFFIN vs TAS

- β -feeding compares favourably against MTAS result!
 - State-by-state comparison is difficult.
 - Cumulative feeding more appropriate.
- GRIFFIN data provides the fine-structure details.
 - Level energies
 - *γ*-ray branching ratios
 - Not possible with TAS.
- GRIFFIN data nearly free of Pandemonium.
 - Challenging given no. of levels populated.
 - Not completely.
 - Only possible with very large statistics.

Summary

- β^- -decay study of ⁹²Rb with GRIFFIN spectrometer at TRIUMF.
- Unprecedented level of detail for ⁹²Sr
 - ~170 excited states populated.
 - Large number of J=1 levels in PDR region.
 - ~ 850 γ -ray transitions.
- β -feeding measurements GRIFFIN vs TAS
 - Fine structure
 - Allowed, first-forbidden decays $\rightarrow \beta$ spectrum shape
 - Excellent agreement despite
 - High-level density.
 - Fragmented γ -decay.
 - Only possible thanks to high beam intensities and GRIFFIN capabilities.

Thank you to my Collaborators!

P. Spagnoletti,¹ M. Ramalho,² J. Suhonen,^{2,3} M. Scheck,⁴ C. Andreoiu,¹ Z. Ahmed,⁵ D. Annen,¹ G. Ball,⁶ G. Benzoni,⁷ S.S. Bhattacharjee,⁶ H. Bidaman,⁵ V. Bildstein,⁵ S. Buck,⁵ R. Caballero-Folch,⁶ R.J. Coleman,⁵ S. Devinyak,⁵ I. Dillman,⁶ I Djianto,¹ F.H. Garcia,⁸ A. Garnsworthy,⁶ P.E. Garrett,⁵ B. Greaves,⁵ C. Griffin,⁶ G. Grinver,⁹ E.G. Fuakye,⁹ G. Hackman,⁶ D. Hymers,⁵ D. Kalaydjieva,¹⁰ R. Kanungo,¹¹ K. Kapoor,⁹ E. Kasanda,⁵ W. Korten,¹⁰ N. Marchini,¹² K. Mashtakov,⁵ A. Nannini,¹² K. Ortner,¹ B. Olaizola,¹³ C. Natzke,⁶ C. Petrache,¹⁰ M. Polettini,¹² A. Radich,⁵ M. Rocchini,⁵ N. Saei,⁹ M. Satrazani,¹⁴ M. Siciliano,¹⁵ M. Singh,¹¹ C. Svensson,⁵ D.A. Torres,¹⁶ R. Umashankar,⁶ V. Vedia,⁶ E Wadge,¹ T. Zidar,⁵ and M. Zielińska¹⁰ ¹Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ²Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland ³International Centre for Advanced Training and Research in Physics (CIFRA), P.O. Box MG12, 077125 Bucharest-Magurele, Romania ⁴School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom ⁵Department of Physics, University of Guelph, Guelph N1G 2W1 Ontario, Canada ⁶TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada ⁷INFN Sezione di Milano, IT-20133 Milano, Italy ⁸Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁹Department of Physics, University of Regina, S4S 0A2 Regina, Canada ¹⁰IRFU/DPhN, CEA Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France ¹¹Astronomy and Physics Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada ¹²INFN Sezione di Firenze, IT-50019 Firenze, Italy ¹³CERN, CH-1211 Geneva, Switzerland ¹⁴Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom ¹⁵Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ¹⁶Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

S2130

Previous studies

- Early beta-decay studies from late 70s/early 80s
 - 17 excited states.
- TAGS (BaF detectors) Zakari
 - Phys. Rev. Lett. 115, 102503 (2015)
- TAGS (Nal detectors) Rasco
 - Phys. Rev. Lett. 117, 092501 (2016)
- G. Lhersonneau, Phys. Rev. C 74, 017308 (2006)
 - $I_{\gamma}(2^+_1 \rightarrow 0^+_1) = 3.2(4)\%$
- Argonne study (not yet published)
 - 52 Additional levels.
- I_{β} (g.s. \rightarrow g.s.)
 - ENSDF: 95.2(7) %
 - Zakari: 87.5(25) %
 - Rasco: 91(3) %
 - Argonne: 91(2) %

Current level scheme

Pietro Spagnoletti

Antineutrino reactor anomaly

- The population of highly excited states means there is less energy shared between the electron antineutrino pair.
- More energy deposited in the reactor.
- The energy spectrum of the antineutrino is reduced.
- Fewer antineutrinos have required energy to induce inverse beta decay.
 - $p + \bar{v}_e \rightarrow n + e^+$

Review articles: N.Paar et al., Rep Prog. Phys. **70** 691 (2007) D. Savran et al., Prog. Part. Nucl. Phys. **70** 210 (2013) A. Bracco et al., Prog. Part. Nucl. Phys. 106 **360** (2019)

Nucleosynthesis

Nuclear EoS $-^{132}$ Sn r_{fit}=0.91 9-(c)⁶⁸Ni $r_{\rm fit}{=}0.95$ **EWSR** [%] PDR 3 PDR ¹³²Sn 0 30 60 90 1200 L [MeV]

Neutron Stars

A. Carbone et al., PRC 81, 041301(R) (2010)

K. Sumiyoshi, Astrophys. J. 629, 922 (2005) Lattimer et al., Phys. Rep. 442, 109 (2007)

Total Absorption Spectroscopy

- Utilizes large volume scintillator detectors.
- Exploits high detection efficiency.
 - Free from *pandemonium*.
- Poor energy resolution.
 - Limited sensitivity to individual states.
- Analysis
- Level scheme split into two regions
- Low energy with discrete states
 - Uses known branching ratios.
- High energy bins
 - Statistical model for level densities, gamma-ray BR.
 - Gamma-ray multiplicity dependence.

 β^{-} data ⁹²Rb \rightarrow ⁹²Sr

- Dominant contributor of high-energy $\overline{v_e}$ flux
- ENSDF data from late 1970s.
 - Using a few low-eff Ge(Li) detectors.
- Two new TAS studies
 - Zakari-Issoufou et al (2015)
 - Rasco et al (2016)
- Significant disagreement in β feeding
 - Pandemonium!
- ⁹²Rb
 - $Q_{\beta} = 8095 \text{ keV}$
 - $J^{\pi} = 0^{-}$

S2130

Reactor decay heat

- Reactors produce energy via fission.
- Each fission is followed by ~6 β decays.
- β decay account for 7-8% energy released.
- Dominates after shut down.
 - Cooling times.
- Decay heat is important for both safety of present and design of future reactors.

Pietro Spagnoletti

