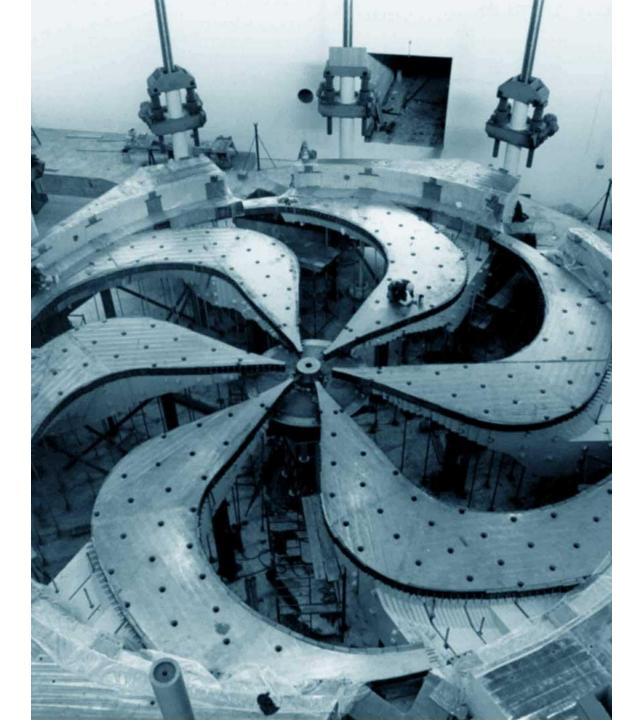
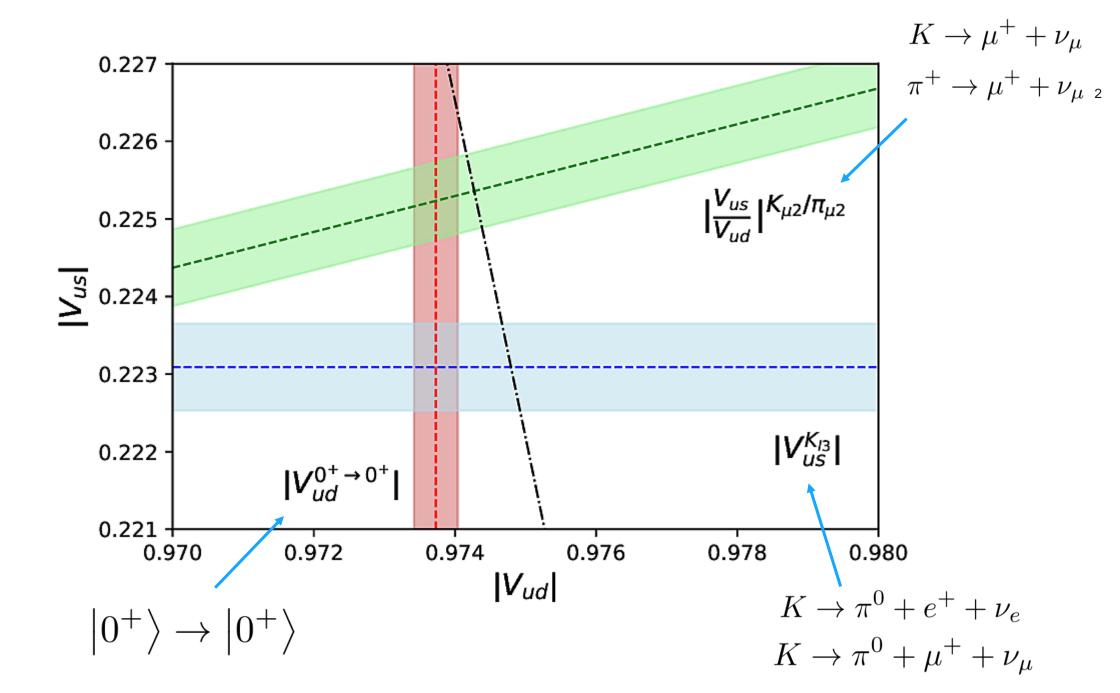
Michael Gennari

TRIUMF and University of Victoria

Collaborators: Mehdi Drissi, Mack Atkinson, Chien-Yeah Seng, Misha Gorchtein, Petr Navrátil





V_{ud} element of CKM matrix

	$ V_{ud} $
superallowed	$0.97373(31)^{19}$
n	$0.97377(90)^{20}$
nuclear mirror	$0.9739(10)^{21}$
π_{e3}	$0.9740(28)^{22}$

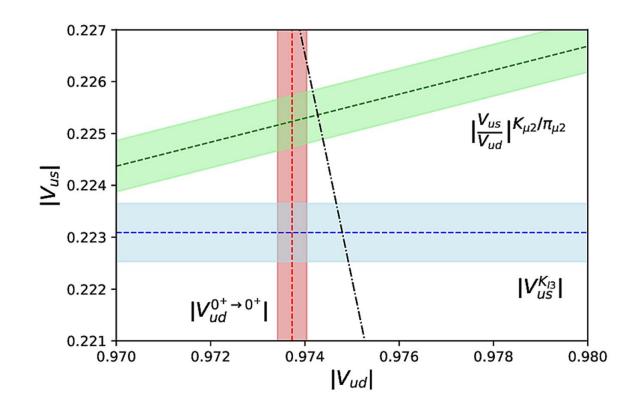
	$ V_{us} $
$K_{\ell 3}$	$0.22309(56)^{23}$
au	$0.2221(13)^{24}$
Hyperon	$0.2250(27)^{25}$

	$ V_{us}/V_{ud} $
$K_{\mu 2}/\pi_{\mu 2}$	$0.23131(51)^{23}$
$K_{\ell 3}/\pi_{e 3}$	$0.22908(87)^{23}$

$$\left|0^{+}\right\rangle \rightarrow\left|0^{+}\right\rangle$$

$$n \to p e^- \bar{\nu}_e$$

$$\pi^+ \to \pi^0 e^+ \nu_e(\gamma)$$



Beta decay in the Standard Model

$$\mathcal{L}_{\text{CC}} = -\frac{G_F}{\sqrt{2}} \begin{pmatrix} \bar{u}_L & \bar{c}_L & \bar{t}_L \end{pmatrix} \gamma^{\mu} W_{\mu}^{+} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.}$$

$$|V_{ud}|^2 = \frac{\hbar^7}{G_F^2 m_e^5 c^4} \frac{\pi^3 \ln(2)}{\mathcal{F}t(1 + \Delta_R^V)} \qquad \left| 0^+ \right\rangle \rightarrow \left| 0^+ \right\rangle$$

 $G_F \equiv \text{Fermi coupling constant}$ determined from muon β decay

V_{ud} element of CKM matrix

Precise V_{ud} from superallowed Fermi transitions

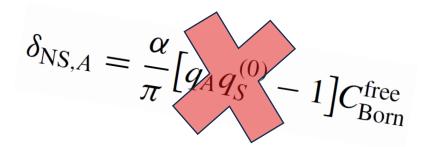
$$|V_{ud}|^2 = \frac{\hbar^7}{G_F^2 m_e^5 c^4} \frac{\pi^3 \ln(2)}{\mathcal{F}t(1 + \Delta_R^V)}$$

 $G_F \equiv$ Fermi coupling constant determined from muon β decay

- hadronic matrix elements modified by nuclear environment
- Fermi matrix element renormalized by isospin non-conserving forces

$$\mathcal{F}t = ft(1 + \delta_R')(1 - \delta_C + \delta_{NS})$$
 $\mathcal{F}t = \frac{K}{G_V^2 |M_{F0}|^2 (1 + \Delta_R^V)}$

Historical treatment



Pre-2018 (for almost 30 years)

- ullet δ_{NS} from shell model and approximate single-nucleon currents
- ullet δ_{C} from shell model with Woods-Saxon potential

Since 2018

- Data-driven dispersion integral approach for Δ_R^V [3-4] which reduced radiative correction uncertainty by factor of ~ 2
- Ongoing nuclear theory [this work] and lattice QCD calculations of electroweak box diagrams

Superallowed nuclear beta decays and precision tests of the Standard Model

rfree Born 7

Pre-2

 \bullet δ_{NS}

• δ_C 1

Since

Dataredu

Ong of e Mikhail Gorchtein^{1,2} and Chien-Yeah Seng^{3,4}

November 20, 2023

Abstract

For many decades, the main source of information on the top-left corner element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix V_{ud} were superallowed nuclear beta decays with an impressive 0.01% precision. This precision, apart from experimental data, relies on theoretical calculations in which nuclear structure-dependent effects and uncertainties play a prime role. This review is dedicated to a thorough reassessment of all ingredients that enter the extraction of the value of V_{ud} from experimental data. We tried to keep balance between historical retrospect and new developments, many of which occurred in just five past years. They have not yet been reviewed in a complete manner, not least because new results are a-coming. This review aims at filling this gap and offers an in-depth yet accessible summary of all recent developments.

^[3] Seng et al. (2018)

^[4] Gorchtein et al. (2019)

^[5] Hardy et al. (2020)

NCSM

Parent Nucleus	$\delta_{ m NS}(\%)$
$^{10}\mathrm{C}$	-0.400(50)
¹⁴ O	-0.283(64)
$^{18}\mathrm{Ne}$	-0.326(55)
$^{22}{ m Mg}$	-0.250(50)
$^{26}\mathrm{Si}$	-0.234(54)
$^{30}\mathrm{S}$	-0.195(56)
$^{34}\mathrm{Ar}$	-0.181(60)
$^{38}\mathrm{Ca}$	-0.167(64)
$^{42}\mathrm{Ti}$	-0.233(68)
$^{46}\mathrm{Cr}$	-0.164(72)
⁵⁰ Fe	-0.140(75)
⁵⁴ Ni	-0.143(79)

Parent Nucleus	$\delta_{ m NS}(\%)$
26m Al	-0.019(51)
$^{34}\mathrm{Cl}$	-0.093(57)
$^{34m}{ m K}$	-0.098(60)
$^{42}\mathrm{Sc}$	0.033(64)
$^{46}\mathrm{V}$	-0.031(65)
$^{50}{ m Mn}$	-0.029(69)
⁵⁴ Co	-0.017(74)
$^{62}\mathrm{Ga}$	-0.016(82)
$^{66}\mathrm{As}$	-0.030(85)
$^{70}{ m Br}$	-0.049(89)
$^{74}\mathrm{Rb}$	-0.032(94)

NCSM

Parent Nucleus	$\delta_{ m NS}(\%)$	
$^{10}\mathrm{C}$	-0.400(50)	ŀ
¹⁴ O	-0.283(64)	-
$^{18}{ m Ne}$	-0.326(55)	_
$^{22}{ m Mg}$	-0.250(50)	r
²⁶ Si	-0.234(54)	
$^{30}\mathrm{S}$	-0.195(56)	
$^{34}\mathrm{Ar}$	-0.181(60)	
³⁸ Ca	-0.167(64)	-
⁴² Ti	-0.233(68)	-
$^{46}\mathrm{Cr}$	-0.164(72)	-
⁵⁰ Fe	-0.140(75)	
⁵⁴ Ni	-0.143(79)	

Parent Nucleus	$\delta_{ m NS}(\%)$
$^{26m}\mathrm{Al}$	-0.019(51)
$^{34}\mathrm{Cl}$	-0.093(57)
$^{34m}{ m K}$	-0.098(60)
$^{42}\mathrm{Sc}$	0.033(64)
^{46}V	-0.031(65)
$^{50}{ m Mn}$	-0.029(69)
$^{54}\mathrm{Co}$	-0.017(74)
$^{62}\mathrm{Ga}$	-0.016(82)
$^{66}\mathrm{As}$	-0.030(85)
$^{70}{ m Br}$	-0.049(89)
$^{74}\mathrm{Rb}$	-0.032(94)

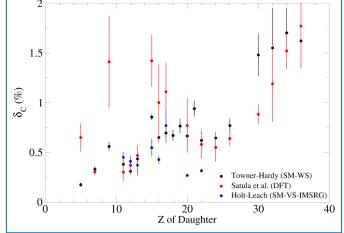
CC

NCSM

Parent Nucleus	$\delta_{ m NS}(\%)$		
		Parent Nucleus	$\delta_{ m NS}(\%)$
¹⁰ C	-0.400(50)	$^{26m}\mathrm{Al}$	-0.019(51)
¹⁴ O	-0.283(64)	$^{34}\mathrm{Cl}$, ,
$^{18}{ m Ne}$	-0.326(55)		-0.093(57)
$^{22}{ m Mg}$	-0.250(50)	$^{34m}\mathrm{K}$	-0.098(60)
	` ′	$^{42}{ m Sc}$	0.033(64)
²⁶ Si	-0.234(54)	46V	-0.031(65)
$^{30}\mathrm{S}$	-0.195(56)	$^{50}\mathrm{Mn}$, ,
$^{34}{ m Ar}$	-0.181(60)		-0.029(69)
$^{38}\mathrm{Ca}$	-0.167(64)	⁵⁴ Co	-0.017(74)
	· /	$^{62}\mathrm{Ga}$	-0.016(82)
⁴² Ti	-0.233(68)	$^{66}\mathrm{As}$	-0.030(85)
$^{46}\mathrm{Cr}$	-0.164(72)	$^{70}\mathrm{Br}$, ,
$^{50}{ m Fe}$	-0.140(75)		-0.049(89)
⁵⁴ Ni	-0.143(79)	$^{74}\mathrm{Rb}$	-0.032(94)
111	0.140(13)		

CC

VS-IMSRG



- Ab initio approach to solving many-body Schrödinger equation
- Sole input are nuclear interactions from chiral effective field theory
 - NN-N⁴LO(500) [6]
 - $-3N(InI)-N^2LO(650)$ [7]

 $H\big|\Psi_A^{J^\pi T}\big\rangle = E^{J^\pi T}\big|\Psi_A^{J^\pi T}\big\rangle$

Anti-symmetrized products of many-body HO states

$$N = N_{\text{max}} + 1$$

$$N = N_{\text{max}} \hbar \Omega$$

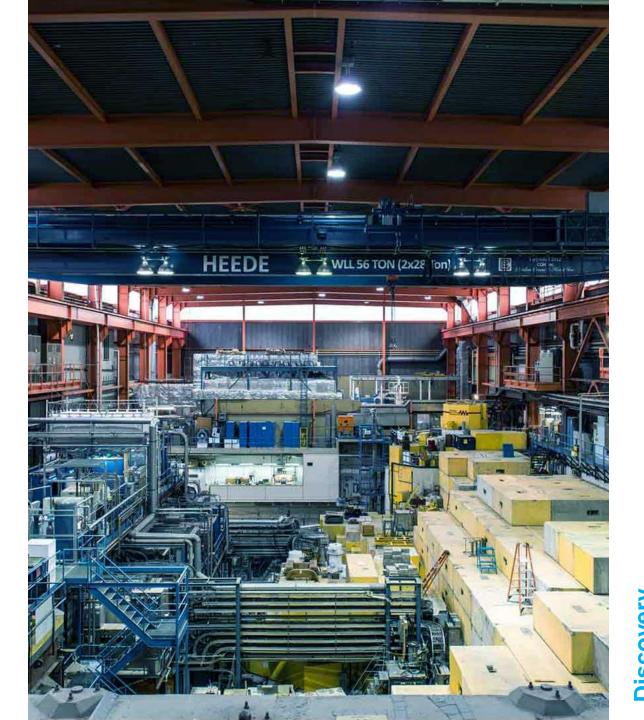
$$N = 1$$

$$N = 0$$

$$\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{N=0}^{N_{max}} \sum_{\alpha} c_{N\alpha}^{J^{\pi}T} \left|\Phi_{N\alpha}^{J^{\pi}T}\right\rangle$$

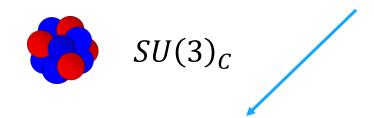
$$\left|\Psi_{A}^{J^{\pi}T}\right\rangle_{\mathrm{SD}} = \sum_{N=0}^{N_{max}} \sum_{\alpha} \left[c^{(\mathrm{SD})}\right]_{N\alpha}^{J^{\pi}T} \left|\Phi_{N\alpha}^{J^{\pi}T}\right\rangle_{\mathrm{SD}} = \left|\Psi_{A}^{J^{\pi}T}\right\rangle \otimes \left|\Phi_{000}\right\rangle$$

Electroweak radiative correction δ_{NS}



Standard Model

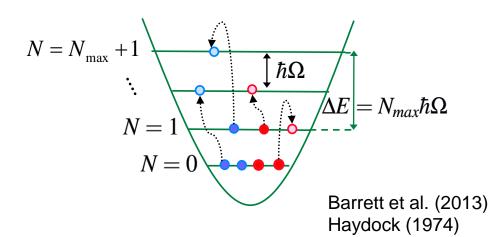
E

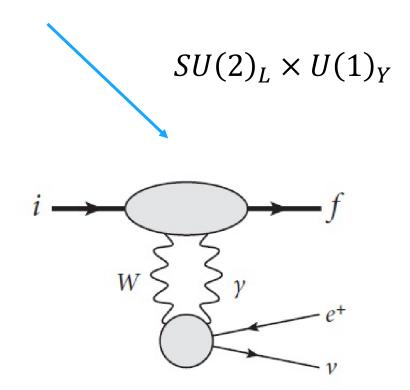


Chiral Effective Field Theory

Entem et al. (2017) Weinberg (1991) Somà et al. (2020) Epelbaum (2009)

$$H|\Psi_A^{J^{\pi}T}\rangle = E^{J^{\pi}T}|\Psi_A^{J^{\pi}T}\rangle$$





- Ultimate goal consistent chiral expansion for electroweak currents
- For now leading multipole expansion

Haxton et al. (2007) Seng et al. (2023)

$\Delta_{\mathrm{R}}^{\mathrm{V}}$ and δ_{NS}

Leptonic current

NME of charged

weak current

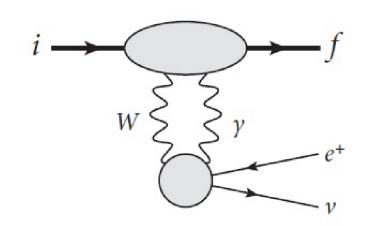
Tree level beta decay amplitude

$$M_{tree} = -\frac{G_F}{\sqrt{2}} L_{\lambda} F^{\lambda}(p', p)$$

Hadronic correction in forward scattering limit

$$\delta M = -i\sqrt{2}G_F e^2 L_\lambda \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 - q^2} \frac{\epsilon^{\mu\nu\alpha\lambda}q_\alpha}{[(p_e - q)^2 - m_e^2]q^2} \underline{T_{\mu\nu}(p', p, q)}$$

$$\delta M = \Box_{\gamma W}(E_e) M_{tree}$$



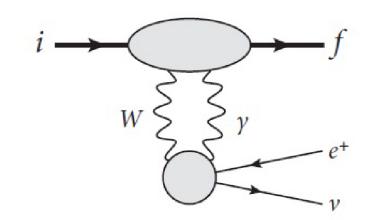
$\Delta_{\rm R}^{\rm V}$ and $\delta_{\rm NS}$

NME of charged weak current • Tree level beta decay amplitude $M_{tree} = -\frac{G_F}{\sqrt{2}} L_\lambda F^\lambda(p',p)$

Leptonic current

- Hadronic correction in forward scattering limit

$$\delta M = \Box_{\gamma W}(E_e) M_{tree}$$



$$\Box_{\gamma W}^{b}(E_{e}) = \frac{e^{2}}{M} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2} - q^{2}} \frac{1}{q^{2} + i\epsilon} \frac{1}{(p_{e} - q)^{2} + i\epsilon'} \frac{M\nu(\frac{p_{e} \cdot q}{p \cdot p_{e}}) - q^{2}}{\nu} \frac{T_{3}(\nu, |\vec{q}|)}{f_{+}(0)}$$

$\Delta_{\rm R}^{\rm V}$ and δ_{NS}

NME of charged weak current • Tree level beta decay amplitude $M_{tree} = -\frac{G_F}{\sqrt{2}} L_\lambda F^\lambda(p',p)$

Leptonic current

$$\delta_{NS} = 2 \left[\Box_{\gamma W}^{ ext{b,nuc}} - \Box_{\gamma W}^{ ext{b,free n}}
ight]^{-f}$$

$$\Box_{\gamma W}^{b}(E_{e}) = \frac{e^{2}}{M} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2} - q^{2}} \frac{1}{q^{2} + i\epsilon} \frac{1}{(p_{e} - q)^{2} + i\epsilon'} \frac{M\nu(\frac{p_{e} \cdot q}{p \cdot p_{e}}) - q^{2}}{\nu} \frac{T_{3}(\nu, |\vec{q}|)}{f_{+}(0)}$$

Lanczos strength method

Reformulate resolvent operator as inhomogeneous Schrödinger equation

$$(H - E1)|\Phi\rangle = \hat{O}|\Psi\rangle$$

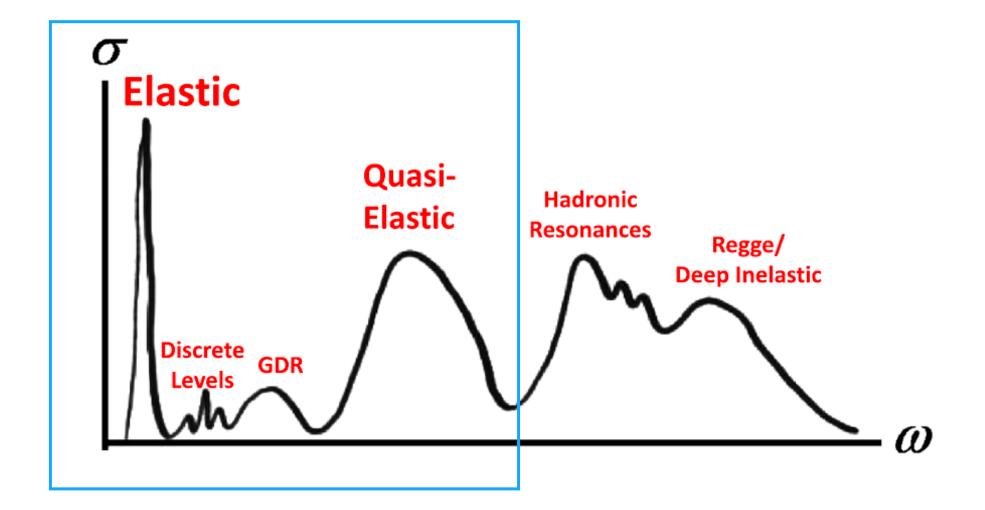
$$H\mathbf{v}_{1} = \alpha_{1}\mathbf{v}_{1} + \beta_{1}\mathbf{v}_{2}$$

$$H\mathbf{v}_{2} = \beta_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \beta_{2}\mathbf{v}_{3}$$

$$H\mathbf{v}_{3} = \beta_{2}\mathbf{v}_{2} + \alpha_{3}\mathbf{v}_{3} + \beta_{3}\mathbf{v}_{4}$$

$$H\mathbf{v}_{4} = \beta_{3}\mathbf{v}_{3} + \alpha_{4}\mathbf{v}_{4} + \beta_{4}\mathbf{v}_{5}$$

- Resolvent amplitudes reconstructed via Lanczos basis
- Avoids (total) brute force calculation of intermediate states



σ L Flastic

No resolution for nuclear γW -box above pion threshold, meaning δ_{NS} extracted with only free nucleon Born contribution

$$\delta_{\text{NS}} = 2 \left\{ \left(\Box_{\gamma W}^{b,\text{nuc}} \right)_{\text{a.i.}} - \left(\Box_{\gamma W}^{b,n} \right)_{\text{el}} + \delta \left(\Box_{\gamma W}^{b,n} \right)_{\text{sh}} \right\}$$

Nuclear poles

$$G(\nu + M_f + i\epsilon) = \sum_{n} \frac{|n\rangle\langle n|}{[\nu + M_f + i\epsilon] - M_n}$$

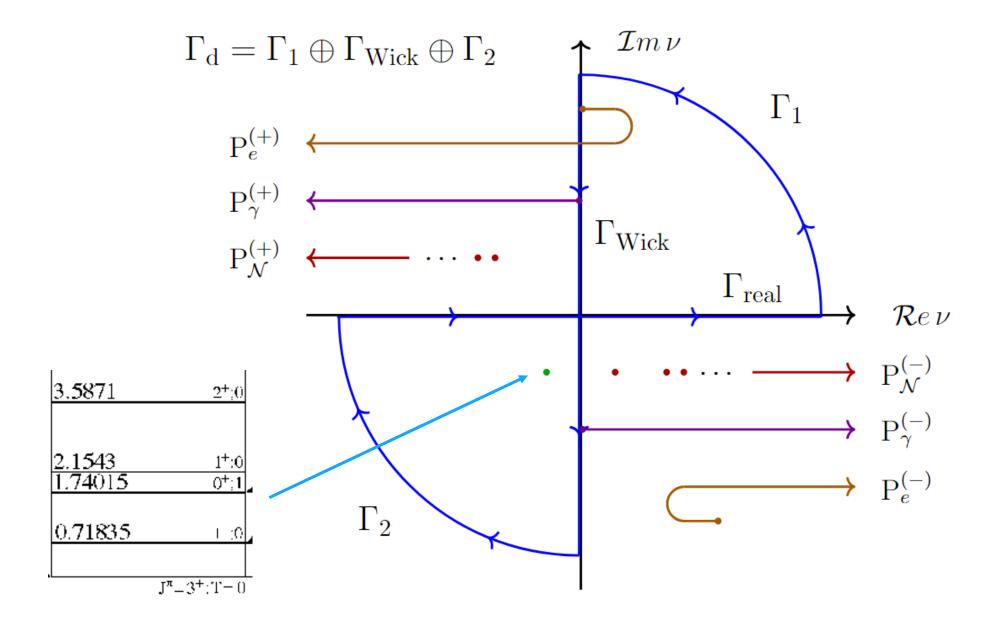
$$G(-\nu + M_i + i\epsilon) = \sum_{n} \frac{|n\rangle\langle n|}{[-\nu + M_i + i\epsilon] - M_n}$$

- Traverse infinite number of poles in discrete and continuous nuclear spectrum
- Natural solution is Wick rotation

$$P_{-} = \{M_n - M_f - i\epsilon\}$$

$$: P_+ = \{M_i - M_n + i\epsilon\}$$

Wick rotation

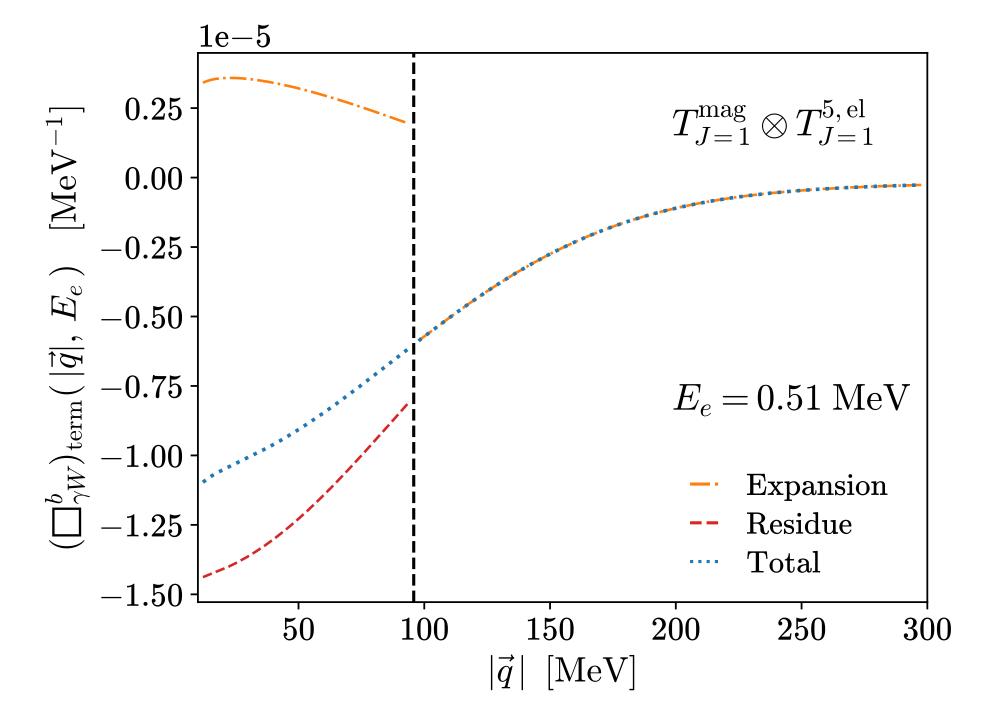


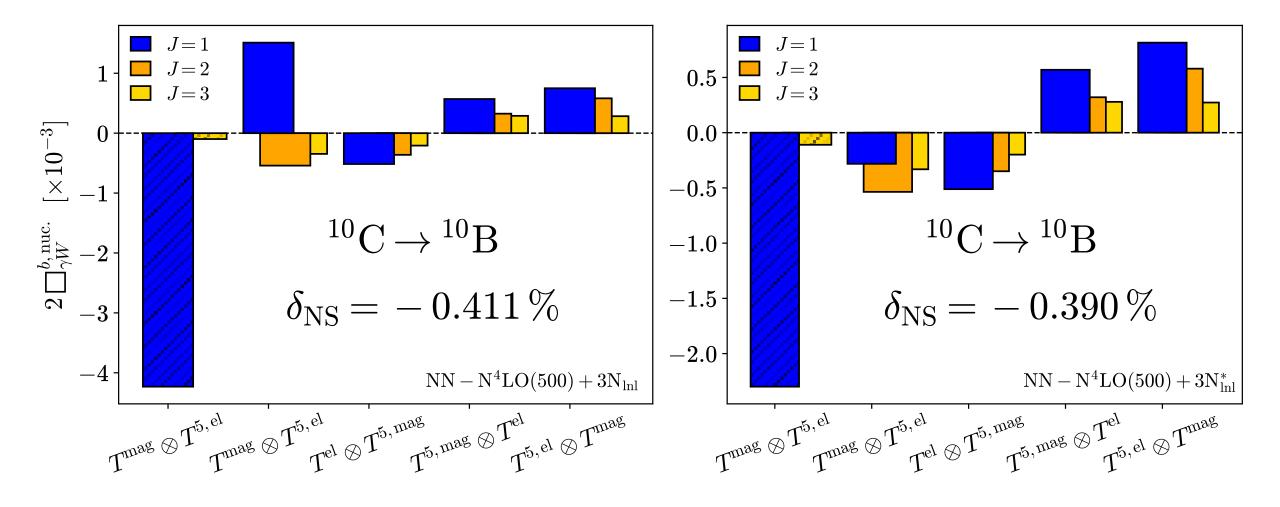
Wick rotation and electron energy expansion

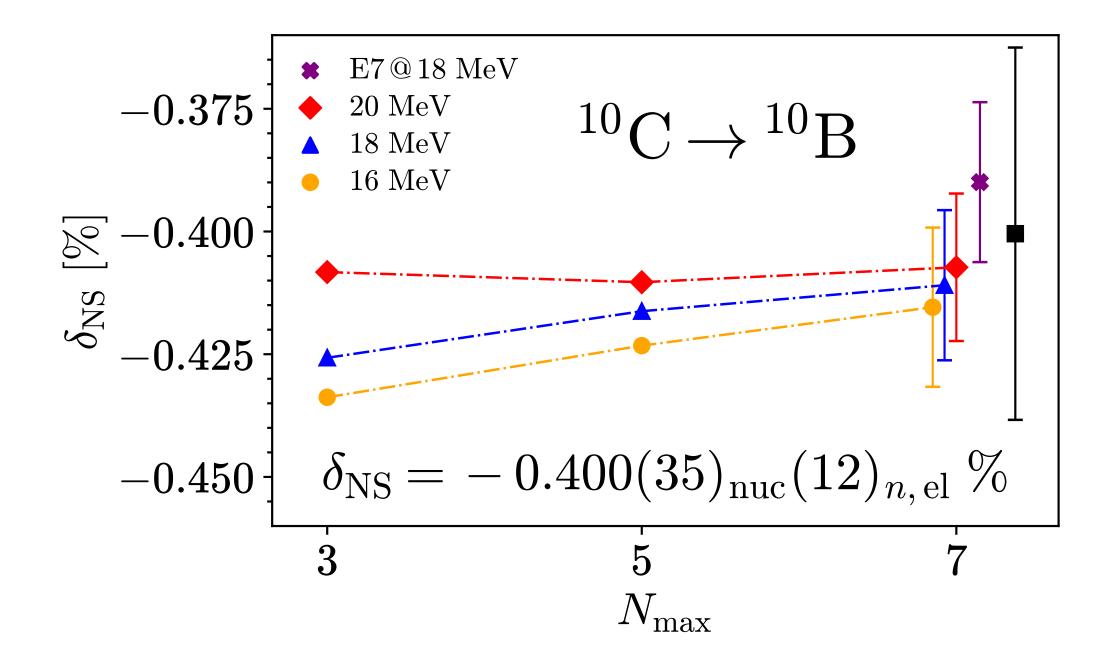
$$\Box_{\gamma W}^{b}(E_{e}) = \left(\Box_{\gamma W}^{b}\right)_{\text{Wick}}(E_{e}) + \left(\Box_{\gamma W}^{b}\right)_{\text{Res},e}(E_{e}) + \left(\Box_{\gamma W}^{b}\right)_{\text{Res},T_{3}}(E_{e})$$

Wick rotated box diagram combined with electron propagator residue contribution regular at $E_e = 0$ T_3 residue contribution **singular**

$$\Box_{\gamma W}^{b}(E_e) = \Box_0 + E_e \Box_1 + \left(\Box_{\gamma W}^{b}\right)_{\text{Res},T_3}(E_e) + \mathcal{O}(E_e^2)$$







- Goal: consistent nuclear theory corrections to Fermi transitions
- Larger basis NCSM calculations of δ_{NS} complete
- First consistent NCSM calculation, seems that residue is dominant feature
- **NCSMC** calculations for δ_C ongoing with Mack Atkinson

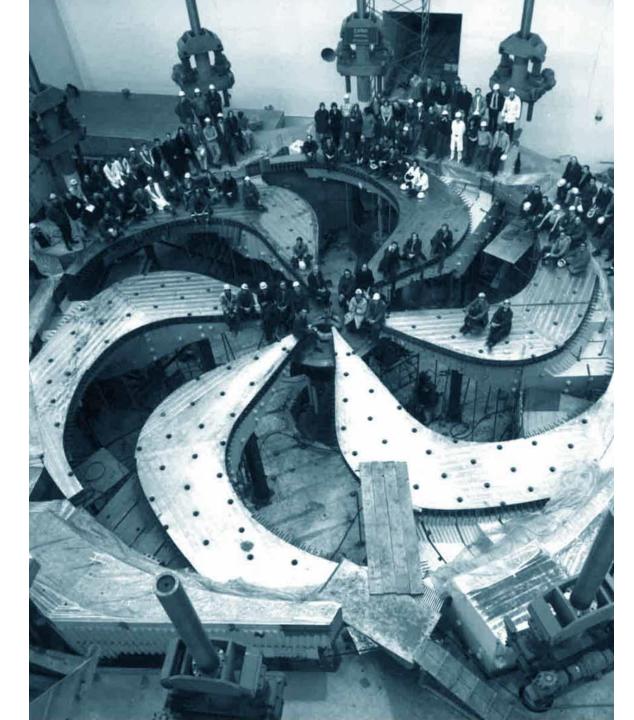
Outlook

- Tackle large number of many-body calculations with realistic N_{max}
 - -seperate inhomogeneous Schrödinger equation at each $|\vec{q}|$
 - $-N_{|\vec{q}|} \times N_{terms} \times J_{max} = 50 \times 4 \times 3 = 600$ many body calculations
- Improve limited uncertainty quantification
- Heavier transitions, e.g., ¹⁴O → ¹⁴N

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab



References

- 1. C.Y. Seng. arXiv preprint: 2112.10942v2 (2022)
- P.A. Zyla et al. (Particle Data Group). Prog. in Theo. and Exp. Phys. 2020, 083C01. (2020)
- 3. C.Y. Seng, M. Gorchtein, H.H. Patel, & M.J. Ramsey-Musolf. PRL **121**(24), 241804. (2018)
- 4. M. Gorchtein. PRL **123**(4), 042503. (2019)
- 5. J.C. Hardy & I.S. Towner. PRC **102**, 045501 (2020)
- 6. D.R. Entem, R. Machleidt & Y. Nosyk. PRC **96**, 024004 (2017)
- V. Somà, P. Navrátil, F. Raimondi, C. Barbieri & T. Duguet. PRC 101, 014318 (2020)
- 8. C.Y. Seng & M. Gorchtein. PRC **107**, 035503 (2023)
- 9. R. Haydock. JPA **7**, 2120 (1974)
- 10. E. Dagotto. RMP **66**, 763 (1994)

Lanczos strength method

Reformulate resolvent operator as inhomogeneous Schrödinger equation

$$(H - E1)|\Phi\rangle = \hat{O}|\Psi\rangle$$

$$H\mathbf{v}_{1} = \alpha_{1}\mathbf{v}_{1} + \beta_{1}\mathbf{v}_{2}$$

$$H\mathbf{v}_{2} = \beta_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \beta_{2}\mathbf{v}_{3}$$

$$H\mathbf{v}_{3} = \beta_{2}\mathbf{v}_{2} + \alpha_{3}\mathbf{v}_{3} + \beta_{3}\mathbf{v}_{4}$$

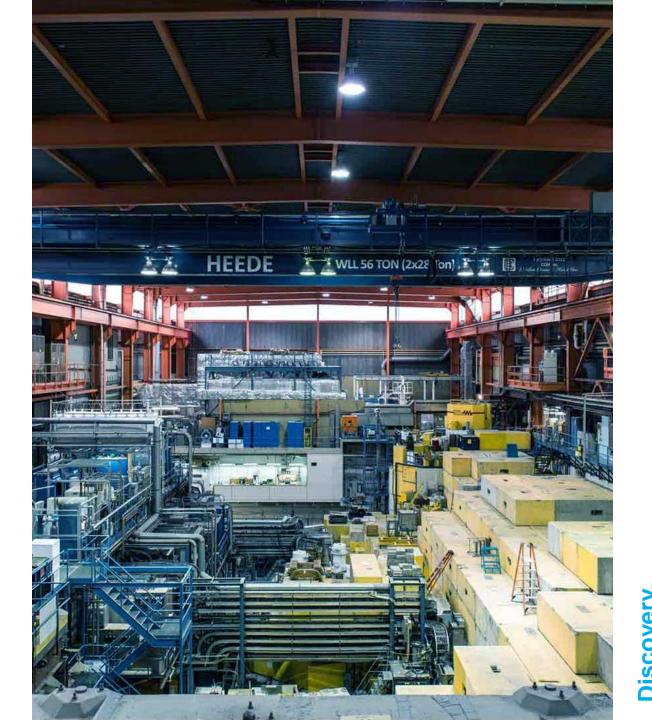
$$H\mathbf{v}_{4} = \beta_{3}\mathbf{v}_{3} + \alpha_{4}\mathbf{v}_{4} + \beta_{4}\mathbf{v}_{5}$$

Access dynamical properties!

$$\langle J_n | \mathbf{O_1} | J_i \rangle = (\mathbf{P}^{(i)})_{0n}^{\dagger} \| \mathbf{O_1} | J_i \rangle \|$$

$$\langle J_i | \mathbf{O_2} | J_n \rangle = \| \mathbf{O_2} | J_i \rangle \| \sum_{m} \left(\mathbf{P}^{(i)} \right)_{mn} \left\langle \phi_0^{(f)} | \phi_0^{(i)} \right\rangle$$

Backup slides for multipole expansion and δ_{NS}



$\Delta_{ m R}^{ m V}$ and δ_{NS}

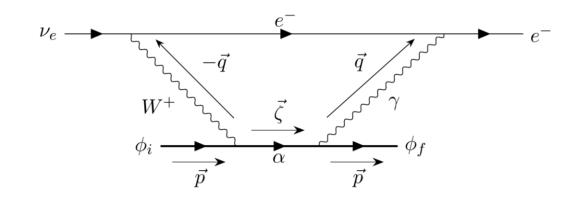
NME of charged weak current $I_{tree} = -\frac{G_F}{\sqrt{2}} L_\lambda F^\lambda(p',p)$

Leptonic current

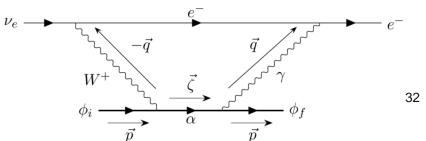
Tree level beta decay amplitude

Hadronic correction in forward scattering limit

$$\delta_{NS} = 2\left[\Box_{\gamma W}^{\text{b,nuc}} - \Box_{\gamma W}^{\text{b,free n}}\right]$$



$$T^{\mu\nu}(p,q) = \frac{1}{2} \int d^4x \ e^{iq\cdot x} \langle \phi_f(p) | T \left[J_{\rm em}^{\mu}(x) J_W^{\nu}(0)^{\dagger} \right] | \phi_i(p) \rangle$$

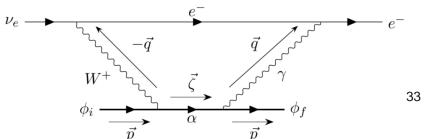


- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators

$$J^{\mu}(t, \vec{x}) = e^{-iHt} J^{\mu}(0, \vec{x}) e^{iHt} \longrightarrow$$

$$G(E) = \sum_{n} \frac{|n\rangle\langle n|}{E - E_n}$$

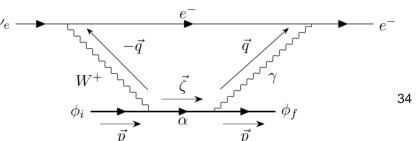
$$T^{\mu\nu}(p,q) = -\frac{i}{2} \int d^3x \ e^{-i\vec{q}\cdot\vec{x}} \langle \phi_f(p) | J_{em}^{\mu}(0,\vec{x}) \underline{G(M_f + \nu + i\epsilon)} J_W^{\dagger\nu}(0,\vec{0}) | \phi_i(p) \rangle$$
$$-\frac{i}{2} \int d^3x \ e^{-i\vec{q}\cdot\vec{x}} \langle \phi_f(p) | J_W^{\dagger\nu}(0,\vec{0}) \underline{G(M_i - \nu + i\epsilon)} J_{em}^{\mu}(0,\vec{x}) | \phi_i(p) \rangle$$



- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space

$$J(\vec{r}) = \int \frac{d^3r}{(2\pi)^3} \; e^{i\vec{q}\cdot\vec{r}} J(\vec{q}) \qquad \qquad + \qquad \begin{array}{c} \text{Translation} \\ \text{invariance} \end{array}$$

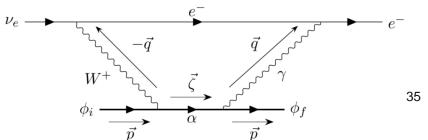
$$T^{\mu\nu}(p,q) = i\sqrt{M_i M_f} \left\langle \Phi_f \middle| J_{em}^{\mu}(\vec{q}) G(M_f + \nu + i\epsilon) J_W^{\dagger\nu}(-\vec{q}) \middle| \Phi_i \right\rangle$$
$$+ i\sqrt{M_i M_f} \left\langle \Phi_f \middle| J_W^{\dagger\nu}(-\vec{q}) G(M_i - \nu + i\epsilon) J_{em}^{\mu}(\vec{q}) \middle| \Phi_i \right\rangle$$



- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

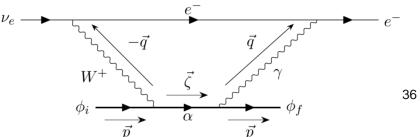
$$M_{JM}(q) \coloneqq \int d^3r \ \mathcal{M}_{JM}(q, \vec{r}) \, \rho(\vec{r}) \qquad \qquad T_{JM}^{\mathrm{el}}(q) \coloneqq \int d^3r \ \frac{1}{q} \left(\vec{\nabla} \times \vec{\mathcal{M}}_{JJ}^M(q, \vec{r}) \right) \cdot \vec{J}(\vec{r})$$

$$L_{JM}(q) \coloneqq \int d^3r \ \frac{i}{q} \left(\vec{\nabla} \mathcal{M}_{JM}(q, \vec{r}) \right) \cdot \vec{J}(\vec{r}) \qquad \qquad T_{JM}^{\mathrm{mag}}(q) \coloneqq \int d^3r \ \vec{\mathcal{M}}_{JJ}^M(q, \vec{r}) \cdot \vec{J}(\vec{r})$$



- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

$$T_{3}(\nu, |\vec{q}|) = 4\pi i \frac{\nu}{|\vec{q}|} \sqrt{M_{i} M_{f}} \sum_{J=1}^{\infty} (2J+1) \left\langle \Psi_{f} \middle| \left\{ T_{J0}^{\text{mag}} G(\nu + M_{f} + i\epsilon) T_{J0}^{5, \text{el}} + T_{J0}^{\text{el}} G(\nu + M_{f} + i\epsilon) T_{J0}^{5, \text{mag}} \right. \\ \left. + T_{J0}^{5, \text{mag}} G(-\nu + M_{i} + i\epsilon) T_{J0}^{\text{el}} + T_{J0}^{5, \text{el}} G(-\nu + M_{i} + i\epsilon) T_{J0}^{\text{mag}} \right\} (|\vec{q}|) \middle| \Psi_{i} \right\rangle$$



- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

Lanczos continued fraction method to compute nuclear Green's functions [13-14]

$$T_{3}(\nu, |\vec{q}|) = 4\pi i \frac{\nu}{|\vec{q}|} \sqrt{M_{i} M_{f}} \sum_{J=1}^{\infty} (2J+1) \left\langle \Psi_{f} \middle| \left\{ T_{J0}^{\text{mag}} C(\nu + M_{f} + i\epsilon) T_{J0}^{5, \text{el}} \middle| + T_{J0}^{\text{el}} G(\nu + M_{f} + i\epsilon) T_{J0}^{5, \text{mag}} \right\} + T_{J0}^{5, \text{mag}} G(-\nu + M_{i} + i\epsilon) T_{J0}^{\text{mag}} \left\{ (|\vec{q}|) \middle| \Psi_{i} \right\rangle$$

[7] Haxton et al. (2007) [13] Hao et al. (2020) [14] Froese et al. (2021)

Electron energy expansion

$$\Box_{\gamma W}^{b}(E_e) = \Box_0 + E_e \Box_1 + \dots + (\Box_{\gamma W}^{b})_{\text{Res}, T_3}(E_e)$$

$$\boxminus_0 = \frac{e^2}{M} \int \frac{d^3q}{(2\pi)^3} \int \frac{d\nu_E}{2\pi} \frac{M_W^2}{M_W^2 - q^2} \frac{|\vec{q}|^2}{\nu_E(q^2 + i\epsilon_1)^2} \frac{T_3(i\nu_E, |\vec{q}|)}{f_+(0)}$$

$$\boxminus_1 = \frac{8}{3} \frac{e^2}{M} \int \frac{d^3q}{(2\pi)^3} \int \frac{d\nu_E}{2\pi} \frac{M_W^2}{M_W^2 - q^2} \frac{|\vec{q}|^2}{(q^2 + i\epsilon_1)^3} \frac{iT_3(i\nu_E, |\vec{q}|)}{f_+(0)}$$

Multipole expansion of amplitude

$$J^{\mu}(q) = \left(\rho(\vec{q}), \vec{J}(\vec{q})\right) \qquad \qquad \vec{J}(\vec{q}) = \sum_{\lambda} J(\vec{q}, \lambda) \, \vec{\epsilon}_{\lambda}^{*}$$

$$e^{-i\vec{q}\cdot\vec{r}} = 4\pi \sum_{J=0}^{\infty} \sum_{M_J} (-i)^J j_J(qr) Y_{JM_J}(\hat{q}) Y_{JM_J}^*(\hat{q})$$

$$\mathcal{M}_{JM}(q, \vec{r}) = j_J(qr) Y_{JM}(\hat{r})$$
 $\vec{\mathcal{M}}_{JL}^M(q, \vec{r}) = j_L(qr) \vec{Y}_{JL1}^M(\hat{r})$

Multipole expansion of amplitude

$$\rho(\vec{q}) = \sqrt{4\pi} \sum_{J=0}^{\infty} (-i)^J \sqrt{2J+1} \, M_{J0}(q)$$

$$J(\vec{q}, \lambda = 0) = \sqrt{4\pi} \sum_{J=0}^{\infty} (-i)^J \sqrt{2J + 1} L_{J0}(q)$$

$$J(\vec{q}, \lambda = \pm 1) = -\sqrt{2\pi} \sum_{J=1}^{\infty} (-i)^J \sqrt{2J+1} \left(\lambda T_{J\lambda}^{\text{mag}}(q) - T_{J\lambda}^{\text{el}}(q) \right)$$

Nuclear matrix elements of multipole operators

$$\left\langle N(p_f s_f m_{T_f}) \middle| V_{TM_T}^{\mu}(0) \middle| N(p_i s_i m_{T_i}) \right\rangle = \bar{u}_{s_f}(p_f) \left[F_1^{(T)} \gamma^{\mu} + \frac{i F_2^{(T)}}{2m_N} \sigma^{\mu\nu} (p_f - p_i)_{\nu} \right] u_{s_i}(p_i) \left\langle m_{T_f} \middle| \Gamma_{TM_T} \middle| m_{T_i} \right\rangle$$

$$\left\langle N(p_f s_f m_{T_f}) \middle| A^{\mu}_{TM_T}(0) \middle| N(p_i s_i m_{T_i}) \right\rangle = \bar{u}_{s_f}(p_f) \left[G_A^{(T)} \gamma^{\mu} \gamma_5 - \frac{G_P^{(T)}}{2m_N} \gamma_5 (p_f - p_i)^{\mu} \right] u_{s_i}(p_i) \left\langle m_{T_f} \middle| \Gamma_{TM_T} \middle| m_{T_i} \right\rangle$$

$$\mathcal{M}_{JM}(q, \vec{r}) = j_J(qr) Y_{JM}(\hat{r})$$

$$\Delta_{JM}(q,\vec{r}) \coloneqq \vec{\mathcal{M}}_{JJ}^{M}(q,\vec{r}) \cdot \frac{1}{q} \vec{\nabla} \qquad \qquad \Sigma'_{JM}(q,\vec{r}) \coloneqq -i \left(\frac{1}{q} \vec{\nabla} \times \vec{\mathcal{M}}_{JJ}^{M}(q,\vec{r}) \right) \cdot \vec{\sigma}$$

$$\Delta'_{JM}(q,\vec{r}) \coloneqq -i \left(\frac{1}{q} \vec{\nabla} \times \vec{\mathcal{M}}_{JJ}^{M}(q,\vec{r}) \right) \cdot \frac{1}{q} \vec{\nabla} \qquad \qquad \Sigma''_{JM}(q,\vec{r}) \coloneqq \left(\frac{1}{q} \vec{\nabla} \mathcal{M}_{JM}(q,\vec{r}) \right) \cdot \vec{\sigma}$$

$$\Sigma_{JM}(q,\vec{r}) \coloneqq \vec{\mathcal{M}}_{JJ}^{M}(q,\vec{r}) \cdot \vec{\sigma} \qquad \qquad \Omega_{JM}(q,\vec{r}) \coloneqq \left(\mathcal{M}_{JM}(q,\vec{r}) \vec{\sigma} \right) \cdot \frac{1}{q} \vec{\nabla}$$

Symmetry tests of T_3 amplitude

- Time reversal symmetry with exact isospin gives NME constraint
- Previously assumed nuclear T₃ matched nucleonic system

Nuclei

Nucleons

Pions

$$T_3^{(0)}(-\nu, Q^2) = -T_3^{(0)}(\nu, Q^2)$$

 $T_3^{(1)}(-\nu, Q^2) = \cdots$

$$T_3^{(0)}(-\nu, Q^2) = -T_3^{(0)}(\nu, Q^2)$$
$$T_3^{(1)}(-\nu, Q^2) = T_3^{(1)}(\nu, Q^2)$$

$$T_3^{(0)}(-\nu, Q^2) = -T_3^{(0)}(\nu, Q^2)$$

 $T_3^{(1)}(\nu, Q^2) = 0$

$$\left\langle ^{10}{\rm B} \big| T_{J0}^{\rm mag,(0)}(q) \, G(M+i\epsilon) \, T_{J0}^{\rm 5,el}(q) \big|^{10}{\rm C} \right\rangle = \left\langle ^{10}{\rm C} \big| T_{J0}^{\rm mag,(0)}(q) \, G(M+i\epsilon) \, \tilde{T}_{J0}^{\rm 5,el}(q) \big|^{10}{\rm B} \right\rangle$$

$$\langle {}^{10}\text{B} | T_{J0}^{\text{el},(0)}(q) G(M+i\epsilon) T_{J0}^{5,\text{mag}}(q) | {}^{10}\text{C} \rangle = \langle {}^{10}\text{C} | T_{J0}^{\text{el},(0)}(q) G(M+i\epsilon) \tilde{T}_{J0}^{5,\text{mag}}(q) | {}^{10}\text{B} \rangle$$