

Japan, Canada, US, and (soon) Mexico

TUCAN EDM Experiment

TRIUMF UltraCold Advanced Neutron Electric Dipole Moment Experiment

Jeff Martin, The University of Winnipeg

Other presentations this week:M3-1A. ZahraPOS-19B. AlgohiT3-4T. Hepworth

CANADA FOUNDATION FOR INNOVATION ONDATION CANADIEN! OUR L'INNOVATION

CANADA RESEARCH CHAIRS CHAIRES DE RECHERCHE DU CANADA

CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENN POUR L'INNOVATION

Electric dipole moment, CP violation, and basic technique

• Hamiltonian of neutron in an EM field (non-relativistic limit)

$$H = -\mu_n \vec{\sigma} \cdot \vec{B} - \underline{d_n \vec{\sigma} \cdot \vec{E}}$$

• Experiment: precise measurement of neutron spin precession frequency to determine d_n

$$\hbar\omega = 2\mu_n B \pm 2d_n E$$

• Statistical uncertainty:

$$\sigma_{d_n} = \frac{n}{2\alpha ET\sqrt{N}}$$

Ł

Precision frequency measurement requiring lots of neutrons

Physics of Neutron Electric Dipole Moment

- Search for new sources of CP violation beyond the standard model.
- Motivated by:
 - New physics for (electroweak) baryogenesis
 - SUSY CP problem / new TeV+ -scale physics
 - Strong CP problem / Peccei-Quinn, axions
 - Other new physics scenarios

Adapted from Morrissey & Ramsey-Musolf New J. Phys. 2012

TRIUMF Ultracold Advanced Neutron (TUCAN) Source

- Concept:
 - Use superfluid helium (He-II) to convert cold neutrons into **ultracold neutrons (UCNs)**
 - Couple the He-II directly to a spallation source of neutrons and cold moderators that can be optimized fully
 - Transport UCN to a room-temperature neutron EDM experiment located farther away from the neutron source and cryogenic systems
- We have been operating this system first at RCNP Osaka, then at TRIUMF. We are now completing a **new upgrade**, scaling up the previous system with several key improvements to reach world-record UCN performance.

TUCAN source and EDM Experiment

7

• Enable search for neutron EDM with 1 x 10⁻²⁷ ecm precision. **TUCAN**

Horizontal source upgrade

TUCAN Source Upgrade Concept and Goals

- LD₂ moderator
 - increase cold neutron flux at 1 meV (\times 2.5)
- Helium Cryostat with high cooling power
 - production volume (imes 3)
 - proton beam power (imes 50)
 - 0.5 kW -> 20 kW
 - heat load on superfluid : 8.1 W
 - include heat deposit on vessel
 - superfluid helium temperature (\times 1/3)
 - T_{He-II} = 1.2 K (0.8 K@RCNP)
 - Storage lifetime : \sim 30 sec
- Estimated source performance
 - production rate: 1.4 x 10⁷ UCN/s
 - UCN density
 - + 6×10^3 UCN/cm³ @ production
 - \sim 220 UCN/cm³ @ measurement

Recent progress

- Oct 2023: He cryostat connected to liquefier and cooled to 4.2 K
- Dec 2023: He cryostat cooled to 1.09 K using large subatmospheric pumps and short prototype of main heat exchanger
- 2024: completion of "tail section" and installation

Top view of TUCAN area in Meson Hall at TRIUMF (April 4, 2024)

courtesy of R. Picker

Magnetically Shielded Room

- Construction at TRIUMF was completed in fall 2023
- Our magnetic verification and testing revealed problems!
- Company will install another shielding layer, August 2024
- Redesign of some parts of EDM experiment was necessary
- EDM experiment installation performed in stages. Precision magnetometry set to begin in September.

T3-4 T. Hepworth

TUCAN Sensitivity Estimate

UCN production rate	$1.4 imes10^7$ UCN/sec	
UCN loaded into EDM cell	220 pol. UCN/cm ³	14M UCN
UCN detected at end of cycle	23 pol. UCN/cm ³	1.4M UCN

S. Sidhu, et al. EPJ Web of Conferences 282, 01015 (2023)

Compare to typ **15,000 UCN** detected at previous best expt. (ILL/PSI), **121,000 UCN** *projected* for n2EDM

N. J. Ayres, et al., EPJ C 81, 512 (2021)

$$\sigma_d = \frac{\hbar}{2\alpha E t_c \sqrt{N}} \qquad \begin{array}{l} {\rm E} = 12.5 \ {\rm kV/cm} \\ {\rm t_c} = 188 \ {\rm s} \\ {\rm \alpha} = 0.6 \ {\rm (visibility)} \end{array} \qquad \sigma_{\rm d} = 2 \ {\rm x} \ 10^{-25} \ e {\rm cm/cycle} \end{array}$$

To reach statistical sensitivity of $\sigma_d = 1 \times 10^{-27}$ ecm 400 days of running required

Additional infrastructure needed, CFI IF 2025

What is needed:

- For the UCN source:
 - High-capacity helium liquefier in Meson Hall (long run times) (\$\$\$)
 - Additional ³He cryogen, pumping power, and moderator (squeeze out the most UCNs possible)
 - Laser upgrade for UWinnipeg UCN guide coating facility (efficient UCN transport)
 - Infrastructure dedicated to the 2nd UCN port (fully exploit the UCNs)
- For the EDM experiment:
 - Upgrades to EDM experiment for full HV, two cells, four detectors
 - Comagnetometer laser upgrade, Cs magnetometers similar in scale to PSI
 - Upgraded external magnetic compensation system, ...
 - Upgrades aimed at maximizing statistics, and detailed control of systematics on par with competitors

Securing infrastructure needed for long-term running of an EDM experiment and full exploitation of the capabilities of the UCN source

UCN guide coating M3-1 A. Zahra POS-19 B. Algohi

Summary and Schedule

TUCAN

- TUCAN source upgrade will enable a search for neutron EDM with 1 x 10⁻²⁷ ecm precision.
- Neutron source upgrade completion 2024.
 - He-II cryostat built and tested in Japan 2020-2021. Now at TRIUMF and ready to install.
- Magnetically shielded room complete August 2024, ready for EDM experiment installation
- First UCN operations in 2024

Future facility at TRIUMF

• Need additional infrastructure to support long-term running (CFI IF 2025)

Is the neutron EDM relevant any more?

d_e < 1.1 x 10⁻²⁹ e-cm (ACME ThO)

 $d_n < 1.8 \ge 10^{-26} \text{ e-cm}$ (PSI nEDM) $d_n < 1.6 \ge 10^{-26} \text{ e-cm}$ (U. Wash ¹⁹⁹Hg)

Yes! Theories...

Energy fundamental CP-odd phases TeV d_e QCD θ , dq, dq, w C_{qe}, C qqnuclear $g_{\pi NN}$ $C_{S,P,T}$ neutron EDM EDMs of EDMs of diamagnetic paramagnetic atomic – atoms (Hg) atoms (Tl)

- Figure: M. Pospelov & A. Ritz, Ann. Phys. **318**, 119 (2005).
- See also: J. Engel, M. Ramsey-Musolf, U. van Kolck, Prog. in Part. and Nucl. Phys. 71, 21 (2013).
 T. Chupp, P. Fierlinger, M. Ramsey-Musolf, and J. Singh, Rev. Mod. Phys. 91, 015001 (2019).17

Feebly Interacting Particles

- The neutron EDM was the original "evidence" for the axion, Peccei-Quinn symmetry.
- Recently: time-dependence of EDM's via oscillating axion field. $a = a_0 \cos m_a t$

$$d_n(t)\approx +2.4\times 10^{-16}\frac{C_Ga_0}{f_a}{\rm cos}(m_at)\,e\,{\rm cm}$$

- Precision clock comparison (axion-like particles, Lorentz violation, background cosmic field, ...)
- Also: mirror neutrons, ...

