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Towards 3D Imaging of Hadrons Reama

Motivation: in other sciences, imaging the physical systems
under study has been
key to gaining new
understanding.

Exclusive reactions
have a key role!

'g@Quregina.ca

Structure mapped

in terms of

b, = transverse position
k; = transverse momentum /

2



GPDs in Deep Exclusive Meson Production %Umversw

PDFs : probability of finding a parton x/
with longitudinal momentum fraction x

and specified polarization in fast p
moving hadron.

\X

GPDs : interference between partons

with x+¢ and x-&, interrelating longitudinal xS/ N A
momentum & transverse spatial structure ,
of partons within fast moving hadron. P P

of egma
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x4 1)1
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A special kinematic regime is probed in
Deep Exclusive Meson Production,

where the initial hadron emits ;5 or gg pair.

i
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e GPDs determined in this regime carry information about
qq and gg-components in the hadron wavefunction.

e Because quark helicity is conserved in the hard scattering

regime, the produced meson acts as helicity filter.

e Pseudoscalar mesons — FIE
3 e Vector mesons —» H E




Accessing GPD Information e

m At sufficiently high Q?, the
Hard-Soft Factorization
Theorem separates the reaction
amplitude into two parts:

m Hard scattering process, where >
perturbative QCD can be used A o
Factorization 1x-§

m A non_perturbatlve (SOft) part, Where .......................................................
the response of the target nucleon to

the virtual photon probe is encoded in ,
GPDs P b

Collins, Frankfurt, Strikman PRD 56(1997)2982 HHEE

m To access physics contained in GPDs, one is limited
to the kinematic regime where hard—soft
factorization applies

= No single criterion for applicability, but tests of necessary
conditions can provide evidence that Q2 scaling regime reached
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Testing Factorization: p(e,e’z")n WRegina

= One of most stringent tests of factorization is Q2
dependence of n/K electroproduction cross sections

m 0, scales to leading order as Q¢

S
3 = As Q2 becomes large: o, » o7
-§, = If we show factorization regime is not reached, it will have major
d implications for meson production GPD experiments in this Q?
é‘) regime (Some of these experiments are already taking data!)
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m £12-19-006 data takmg completed 2022
m PhD students: N. Heinrich, M. Junaid Spokespersons: D. Gaskell, T. Horn, GMH



Important 2" Test: p(e,e’K)A
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* Experimental validation of onset of hard scattering regime Is

*|s onset of scaling different for kaons than pions?
*K* and " together provide quasi model-independent study

essential for reliable interpretation of JLab GPD program results
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p(e,e’KY)A Existing m and Projected ¢om Data

m £12-09-011 qata taking partially completed in 2019
m Data for x;=0.40 scan in hand. Data for x3=0.25 scan only partly acquired.
m Spokespersons: T. Horn, P. Markowitz, GMH



d’c do, do; / do,,
2T =g + +.[2ele+1 COSQ+ &
dtd ¢ dt dt ( ) dt ?

Scattering Plane /

Reaction Plane

Virtual-photon polarization:
e=|1+2 (&, Ee'z) i tan’ %
0, 2

-C=(ps-3)°

W2=(py+pp) t=(P,—Pr)?

Garth Huber, huberg@Quregina.ca

= For GPD factorization test, we need o
= L-T separation required to separate ¢, from o,

m For non—parallel kinematics, separation of 6; 1, G
also required, which requires full azimuthal coverage



SHMS:

*11 GeV/c Spectrometer

* Partner of existing 7
GeV/c HMS

MAGNETIC OPTICS:

*Point-to Point QQQD for
easy calibration and
wide acceptance.

*Horizontal bend magnet
allows acceptance at
forward angles (5.5°)

Detector Package:
* Drift Chambers
*Hodoscopes
*Cerenkovs
*Calorimeter

Well-Shielded Detector
Enclosure

Rigid Support Structure

*Rapid & Remote
Rotation

*Provides Pointing
Accuracy &
Reproducibility
demonstrated in HMS

Luminosity
e~4x1038 cm2 st

"3 %, U.5. DEPARTMENT OF
¢ -
7

ENERGY

Office of
Science

Jefferson Lab Hall C
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Incident
Beam

NS £ Super High Mafentum Spectrometer
A HMS = High Momentum Spect

Upgraded Hall C has some

similarity to SLAC End Station A,
where the quark substructure of
proton was discovered in 1968. :

.gefferson Lab
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PionLT (E12-19-006) t—¢ Coverage B Ujns

*Measure o1, 01 by taking data at three pion spectrometer (SHMS)
angles, +2°, 0°, -2°, with respect to g—vector

Example t—@ plots from: Q2=3.85, W=3.07, High ¢
SHMS Left (+2°) SHMS Center (0°) SHMS Right (-2°)

Plots by Nathan Heinrich

(Regina PhD student)
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*To control systematics, an excellent understanding of spectrometer
acceptances is required

» Over—constrained p(e,e’p) reaction, and inelastic e+'2C, used to calibrated
spectrometer acceptances, momenta, kinematic offsets, efficiencies.
 Control of point—to—point systematic uncertainties crucial due to 1/Ae¢ error
9 amplification in o,



The different pion arm (SHMS) settings are

g U?iversiyy
combined to yield o-distributions for each r-bin R

2
27 d0 _ gdGL - 4oy +\/2g(8+1)d6” COS ¢+ gda—"cos2¢
did¢ ~ di | di dt dt

LH+,Q%=3.85,W=3.07,6=.67,8,,=+0.000

w[GeV]
@ w
w kS

Diamond cuts define common
- (W,Q?) coverage at both ¢

Simulated SHMS+HMS acceptance at Q2=3.85, W=3.07
W High €=0.67 ™ Low £=0.30
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mExtract o, by simultaneous fit °
of L,T,LT,TT using measured 2 -
azimuthal angle (¢_) and i = L (i
knowledge of photon 1 =0.139 GeV®
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Opportunities with higher JLab E,_,,, P§ Unsersiy
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= JLab 22 GeV Upgrade White Paper:

A. Accardi, et al., *“Strong Interaction Physics at the Luminosity Frontier with
22 GeV electrons at Jefferson Lab", arXiv: 2306.09360, EPJA (in press)

= Staged Hall C Upgrade Seems Logical

= Phase 1: Upgrade Beam to 18 GeV, minor upgrades of
SHMS, HMS PID, tracking and DAQ

= Phase 2: Upgrade Beam to 22 GeV, upgrade HMS' to 15
GeV/c

= Would enable a significant increase in Q2 reach of quality L-T
separations for Deep Exclusive Meson Production

m Hall C is world’s only facility that can do L-T separations over
wide kinematic range

m As the interpretation of some EIC data (e.g. GPD extraction) will
depend on extrapolation of Hall C L-T separated data, maximizing
overlap between Hall C and EIC data sets should be a high priority



DEMP Q" Hard-Soft Factorization Tests
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Q" scaling test range nearly doubles with 18 GeV beam and HMS+SHMS |




Summa ry University
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m GPDs are an important next step in our understanding
of hadronic structure

m Factorization studies are crucial if the field is to fully
utilize the information encoded in GPDs, as GPDs are
only accessible experimentally in the hard-soft
factorization regime

s PionLT (E12-19-006) will measure LT—-separated
p(e,e’n")n data for Q" scans at xz3=0.31, 0.39, 0.55

s KaonLT (E12-09-011) has acquired p(e,e’K*)A data for a
Q" scan at x3=0.40, and an eventual extension to xz=0.25

= A further JLab upgrade to 18-22 GeV would double the Q2

range covered in these tests, and allow the region of
applicability of the factorization theorem to be probed with
greater authority
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Hadron Femtography via GPDs Uniyersity
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DIS

\ (structure functions)
longitudinal
parton distribution
— in momentum space

TRegina

DES (GPDs)

Fully-correlated
parton distribution in
both coordinate and

momentum space



Regge Exchange Contribution
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Calculation by A.P. Szczepaniak et
al. [arXiv:0707.1239v2] suggest
significant scaling violations at small
—t and independent of Q2

m  Expect Q2 behavior characteristic for
hadronic Regge amplitudes
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Backward Angle Hard-Soft Factorization University
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Extension of collinear factorization to u—-channel

* Proposed by Frankfurt, Polykaov, Strikman, Zhalov, Zhalov [arXiv:hep-ph/0211263]
 Transition Distribution Amplitude (TDA) formalism by: B. Pire, K. Semenov—-Tian—Shansky,

L. Szymanowski, Phys. Rep. 920(2021)1

Garth Huber, huberg@Quregina.ca
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E12-20-007: W.B. Li, G.M. Huber,
J. Stevens (spokespersons)
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m First dedicated u—-channel

electroproduction study above
resonance region:

m Demonstrate existence of far backward
u—channel cross section peak

m Q" scaling behavior of do/dt

m Uu—dependence of L/T separated cross
sections



Jeff;?son Lab

@Thomas Jefferson National Accelerator Facility
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add new hall

upgrade magnets
and power supplies

Two 1.5 GHz Superconducting Linear
Accelerators provide electron beam for
Nucleon & Nuclear structure studies.

- Beam energy E — 12 GeV.
 Beam current >100 pA.
* Duty factor 100%, 85% polarization.

» Experiments in all 4 Halls can receive
beam simultaneously.

.}efferson Lab



SHMS Focal Plane Detector System

QLAY, DLAY Lowest-ievel irigger.
Hodoscopes Time reference
. iviomentum ivieasurement. 5mm max. darift
e Drift Chambers . . .
Counter Tracking. 300 micron resolution
Particie iD, Trigger. vary Ar/iNe mixture to
Noble-Gas Cerenkov e*/1r* at high momentum set index at Tt
(replace by vacuum at low p) threshold.
Heavy-Gas Particie ib, Trigger. C,F,O — Vary pressure 1o
' Cerenkov mt/K* discrimination set index at K* threshold
Preshower / Particie ib, Trigger.
Shower Counters Electron tag

~N Incident Particles
through SHMS
magnet optics

ENERGY Science

% U.5. DEPARTMENT OF Ofﬁce Of e
| « _.__J A

.Jefferson Lab




HMS and SHMS during Data Taking

m=a This experiment has in large part driven the L 78
forward angle requirements of the SHMS+HMS '

0 N

: ; e
| m——

Chamber N

N\
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HMS+SHMS at minimum
opening angle of 18.00°
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p(e,e’7*)n Event Selection
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Coincidence measurement between charged
pions in SHMS and electrons in HMS.

Easy to isolate

exclusive channel
» Excellent particle

identification
« CW beam minimizes &

“accidental” coincidences
» Missing mass resolution

easily excludes 2—pion

contributions

Events

Events

PionLT experiment E12-19-006 Data
Q%=1.60, W=3.08, x=0.157, £=0.685
=9.177 GeV, Pg,,=+5.422 GeV/c, 0g,,.= 10.26° (left)
Plots by Muhammad Junaid
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The different pion arm (SHMS) settings are

g University

combined to yield ¢-distributions for each #-bin "Regina

2
7 d o gdGL 40y —I—\/28(8+1)dGLT coS ¢+ gdGTT cos2¢
didg  dr | dr d

m Extract all four response
functions via a simultaneous
fit using measured azimuthal
angle (¢.) and knowledge of
photon polarization ().

= This technique demands
good knowledge of the
magnetic spectrometer
acceptances. 2 -

« Control of point-to—point
systematic uncertainties § o W =221 GeV
. LOW 2
crucial due to 1/Ac error -1 =0.139 GeV
amplification in o, 0 | ' ' ' ' ' '
» Careful attention must be paid to O &R 1000 10 200 250 200 850
spectrometer acceptance, ¢ (deg)

kinematics, efficiencies, ... T. Horn, et al, PRL 97 (2006)192001

d’o/dtdo (ub/GeV?)
HlH
HEH
HElH

R Q° = 1.59 (GeV’/c)
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L/T—separation error propagation
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Magnetic Spectrometer Calibrations
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m Similarly to Fr—2, we use the

Uncertainties from F_Proposal (E12-06-101)

—PToJECIed Systemane | Pt-Pt T Scare
over—constrained p(e’e ’p) Uncertainty g-random ;‘:‘r:’:;:a:eti g-global
. . . . Source t-random . t-global
s reaction and inelastic ¢+'*C in all t-bins
g the DIS region to calibrate rocentance. | 0% 0% T.0%
< Spectrometer acceptances, rATgET THICKNESS 0% 5%
g momenta, offsets, etc. EeAT O 02 05%
% [ | FTc—2 beam energy and HMSFSHMS Tracking U T% U4% 5%
9 spectrometer momenta CoToaTes BIooKINg 0%
2 determined to <0.1%. P1D 0A%
g n Spectrometer ang|es <0.5 mr. Pion Decay Correction | 0.03% U.5%
E m Fn—2 agreement with oo Pon e 1%
g DUb“Shed p+€ eIaStiCS Cross WMIC ModelrDependence | U.2% 0% 05%
g SeCtlonS <2% Radiative Lorrections U. 17 U.4% Z2.U%
AIinematic Utrsets U.4% 1.U7%

= Uncorrelated uncertainties in o, are amplified by 1/A¢ in L/T separation.
» Scale uncertainty propagates directly into separated cross section.




