Probing the Onset of QCD's Hard-Soft Factorization via Deep Exclusive Meson Production

Garth Huber

Supported by:

CAP Congress, London, ON May 28, 2024

Towards 3D Imaging of Hadrons

GPDs in Deep Exclusive Meson Production

PDFs : probability of finding a parton with longitudinal momentum fraction *x* and specified polarization in fast moving hadron.

GPDs : interference between partons with $x+\xi$ and $x-\xi$, interrelating longitudinal momentum & transverse spatial structure of partons within fast moving hadron.

A special kinematic regime is probed in Deep Exclusive Meson Production, where the initial hadron emits $q \overline{q}$ or gg pair.

- GPDs determined in this regime carry information about $q\overline{q}$ and gg-components in the hadron wavefunction.
- Because quark helicity is conserved in the hard scattering regime, the produced meson acts as helicity filter.
 - Pseudoscalar mesons $\rightarrow \tilde{H} \tilde{E}$
 - Vector mesons $\rightarrow HE$

Accessing GPD Information

At sufficiently high Q², the Hard–Soft Factorization Theorem separates the reaction amplitude into two parts:

- Hard scattering process, where perturbative QCD can be used
- A non-perturbative (soft) part, where the response of the target nucleon to the virtual photon probe is encoded in GPDs

Collins, Frankfurt, Strikman PRD <u>56(1997)2982</u>

- To access physics contained in GPDs, one is limited to the kinematic regime where hard–soft factorization applies
 - No single criterion for applicability, but tests of necessary conditions can provide evidence that Q² scaling regime reached

Testing Factorization: $p(e,e'\pi^+)n$

- One of most stringent tests of factorization is Q² dependence of π/K electroproduction cross sections
 - σ_L scales to leading order as Q⁻⁶
 - As Q² becomes large: σ_L » σ_T
- If we show factorization regime is not reached, it will have major implications for meson production GPD experiments in this Q² regime (Some of these experiments are already taking data!)

Important 2nd Test: *p(e,e'K*⁺)Λ

- Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results
- Is onset of scaling different for kaons than pions? • K^+ and π^+ together provide quasi model-independent study

- **For GPD factorization test, we need** σ_L
- **L-T** separation required to separate σ_L from σ_T
- For non–parallel kinematics, separation of σ_{LT} , σ_{TT} also required, which requires full azimuthal coverage

Jefferson Lab Hall C

HMS

Cryotarget

SHMS:

11 GeV/c Spectrometer
Partner of existing 7 GeV/c HMS

MAGNETIC OPTICS:

- Point-to Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

- Drift Chambers
- Hodoscopes
- •Cerenkovs
- Calorimeter

Well-Shielded Detector Enclosure

Rigid Support Structure • Rapid & Remote

- Rotation
- Provides Pointing Accuracy & Reproducibility demonstrated in HMS

Luminosity •~ $4x10^{38}$ cm⁻² s⁻¹

Upgraded Hall C has some similarity to SLAC End Station A, where the quark substructure of proton was discovered in 1968.

 π/K

SHMS

To bean

dump

Incident

Beam

-JSA

PionLT (E12–19–006) t–φ Coverage

•Measure σ_{LT} , σ_{TT} by taking data at three pion spectrometer (SHMS) angles, +2°, 0°, -2°, with respect to *q*-vector

- •To control systematics, an excellent understanding of spectrometer acceptances is required
 - Over–constrained *p*(*e*,*e'p*) reaction, and inelastic e+¹²C, used to calibrated spectrometer acceptances, momenta, kinematic offsets, efficiencies.
 - Control of point–to–point systematic uncertainties crucial due to $1/\Delta\epsilon$ error amplification in σ_l

9

The different pion arm (SHMS) settings are combined to yield φ -distributions for each *t*-bin

Opportunities with higher JLab E_{beam}

JLab 22 GeV Upgrade White Paper:

A. Accardi, et al., ``Strong Interaction Physics at the Luminosity Frontier with 22 GeV electrons at Jefferson Lab", arXiv: 2306.09360, EPJA (in press)

Staged Hall C Upgrade Seems Logical

- Phase 1: Upgrade Beam to 18 GeV, minor upgrades of SHMS, HMS PID, tracking and DAQ
- Phase 2: Upgrade Beam to 22 GeV, upgrade HMS' to 15 GeV/c
 - Would enable a significant increase in Q² reach of quality L–T separations for Deep Exclusive Meson Production
- Hall C is world's only facility that can do L–T separations over wide kinematic range
- As the interpretation of some EIC data (e.g. GPD extraction) will depend on extrapolation of Hall C L–T separated data, maximizing overlap between Hall C and EIC data sets should be a high priority

DEMP *Q*^{-*n*} Hard–Soft Factorization Tests

 $p(e,e'\pi^+)n$

Q⁻ⁿ scaling test range nearly doubles with 18 GeV beam and HMS+SHMS

Summary

- GPDs are an important next step in our understanding of hadronic structure
- Factorization studies are crucial if the field is to fully utilize the information encoded in GPDs, as GPDs are only accessible experimentally in the hard–soft factorization regime
- PionLT (E12–19–006) will measure LT–separated $p(e, e'\pi^+)n$ data for Q⁻ⁿ scans at x_B=0.31, 0.39, 0.55
- KaonLT (E12–09–011) has acquired $p(e, e'K^+)\Lambda$ data for a Q^{-n} scan at $x_B = 0.40$, and an eventual extension to $x_B = 0.25$
- A further JLab upgrade to 18-22 GeV would double the Q² range covered in these tests, and allow the region of applicability of the factorization theorem to be probed with greater authority

Hadron Femtography via GPDs

х

DIS

(structure functions) longitudinal parton distribution

_ in momentum space

DES (GPDs)

Fully-correlated parton distribution in both coordinate and momentum space

Regge Exchange Contribution

- Calculation by A.P. Szczepaniak et al. [arXiv:0707.1239v2] suggest significant scaling violations at small -t and independent of Q²
 Expect Q² behavior characteristic for
 - Expect Q² behavior characteristic for hadronic Regge amplitudes

 $\sigma_{L,T} \sim (Q^{-n})^{2\alpha(t)-1}$

Х	$\alpha_{\rm L}$	α _T
0.31	0.46 ± 0.50	1.90 ± 0.36
0.45	0.92 ± 2.00	0.99 ± 0.51

HERMES π^+ fit: α =0.31 ± 0.2 (0.26 < x_B < 0.80), BUT not separated

Backward Angle Hard–Soft Factorization

Extension of collinear factorization to u-channel

- Proposed by Frankfurt, Polykaov, Strikman, Zhalov, Zhalov [arXiv:hep-ph/0211263]
- Transition Distribution Amplitude (TDA) formalism by: B. Pire, K. Semenov–Tian–Shansky,
 - L. Szymanowski, Phys. Rep. <u>920</u>(2021)1

E12–20–007: W.B. Li, G.M. Huber, J. Stevens (spokespersons)

First dedicated u–channel electroproduction study above resonance region:

- Demonstrate existence of far backward u–channel cross section peak
- Q^{-n} scaling behavior of $d\sigma_T/dt$
- u-dependence of L/T separated cross sections

SA

Office of

Science

Two 1.5 GHz Superconducting Linear Accelerators provide electron beam for Nucleon & Nuclear structure studies.

- Beam energy $E \rightarrow 12$ GeV.
- Beam current >100 μA.
- Duty factor 100%, 85% polarization.
- Experiments in all 4 Halls can receive beam simultaneously.

SHMS Focal Plane Detector System

HMS and SHMS during Data Taking

p(e,e'π⁺)*n* Event Selection

of Regina

Coincidence measurement between charged pions in SHMS and electrons in HMS.

Easy to isolate exclusive channel

- Excellent particle identification
- CW beam minimizes
 "accidental" coincidences
- Missing mass resolution easily excludes 2–pion contributions

PionLT experiment E12–19–006 Data Q^2 =1.60, W=3.08, x= 0.157, ε=0.685 E_{beam}=9.177 GeV, P_{SHMS}=+5.422 GeV/c, θ_{SHMS}= 10.26° (left) Plots by Muhammad Junaid

The different pion arm (SHMS) settings are combined to yield φ -distributions for each *t*-bin

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$

 Extract all four response functions via a simultaneous fit using measured azimuthal angle (φ_π) and knowledge of photon polarization (ε).

- This technique demands good knowledge of the magnetic spectrometer acceptances.
- Control of point-to-point systematic uncertainties crucial due to 1/Δε error amplification in σ_L
- Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies, ...

T. Horn, et al, PRL **97** (2006)192001

L/T-separation error propagation

Garth Huber, huberg
$$\frac{\sqrt{7}}{7}$$

 $\frac{\sqrt{7}}{7}$
 $\frac{\sqrt{7}}{7}$

$$\frac{d^2\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\,\varepsilon\,(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi_{\pi} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi_{\pi}$$
$$\frac{\Delta\sigma_L}{\sigma_L} = \frac{1}{\left(\varepsilon_1 - \varepsilon_2\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\left(R + \varepsilon_1\right)^2 + \left(R + \varepsilon_2\right)^2} \qquad \text{where } R = \frac{\sigma_T}{\sigma_L}$$
$$\frac{\Delta\sigma_T}{\sigma_T} = \frac{1}{\left(\varepsilon_1 - \varepsilon_2\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\varepsilon_1^2 \left(1 + \frac{\varepsilon_2}{R}\right)^2 + \varepsilon_2^2 \left(1 + \frac{\varepsilon_1}{R}\right)^2}$$

$$\frac{d\sigma_{\frac{erroLin}{D} d\sigma_{c}} - tQ^{2}}{\frac{\sigma_{\frac{erroLin}{D} d\sigma_{c}}}{\frac{\sigma_{\frac{erroLin}{D}}{\frac{\sigma_{\frac{erroLin}{D}}}{\frac{\sigma_{$$

Magnetic Spectrometer Calibrations

- Similarly to Fπ–2, we use the over–constrained p(e,e'p) reaction and inelastic e⁺¹²C in the DIS region to calibrate spectrometer acceptances, momenta, offsets, etc.
 - Fπ–2 beam energy and spectrometer momenta determined to <0.1%.</p>
 - Spectrometer angles <0.5 mr.
 - Fπ–2 agreement with published *p*+*e* elastics cross sections <2%.

Uncertainties from F_{π} Proposal (E12–06–101)

Projected Systematic	Ρτ-Ρτ	-3	Scale
Uncertainty	ε-random	uncorrelated	ε-global
Source	t-random	common to all t-bins	t-global
Spectrometer	0.4%	0.4%	1.0%
Acceptance			
Target Thickness		0.2%	0.8%
Beam Charge	-	0.2%	0.5%
HMS+SHMS Tracking	0.1%	0.4%	1.5%
Coincidence Blocking		0.2%	
PID		0.4%	
Pion Decay Correction	0.03%	-	0.5%
Pion Absorption Correction	-	0.1%	1.5%
MC Model Dependence	0.2%	1.0%	0.5%
Radiative Corrections	0.1%	0.4%	2.0%
Kinematic Offsets	0.4%	1.0%	-

- Uncorrelated uncertainties in σ_{UNS} are amplified by $1/\Delta\epsilon$ in L/T separation.
- Scale uncertainty propagates directly into separated cross section.