Unraveling Plasma Acceleration in Low–β Environments: Insights from MHD and PIC Simulations

Jasmin Deguire*, Andrei Smolyakov * zjy417@usask.ca Department of Physics and Engineering Physics, University of Saskatchewan

Introduction

The magnetic nozzle derived from the Laval nozzle is used to accelerate plasma from subsonic to supersonic velocities. This kind of acceleration is observed in the solar wind dynamic.

Methods

Particle-In-Cell

Magnetohydrodynamics code

Pårker Solar winds [1] Discussion

Axial velocity for r=0

The plasma may be accelerated by a gradient of pressure to supersonic velocity and by torsionnal Alfvén waves to superalfvénic velocities.

References

[1] Krista, Larisza. (2012). The Evolution and Space Weather Effects of Solar Coronal Holes.

[2] Wójcik, et al. Numerical Simulations of Torsional Alfvén Waves in Axisymmetric Solar Magnetic Flux Tubes. Sol Phys 292, 31 (2017).

