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Motivation
● Noise severely limits the performance of today’s quantum computers

● Quantum error correction enables scalable quantum computation for applications

○ Factoring [Sho96], chemical simulation [BBM+20], optimisation [OML19], … 

○ But space & time overheads are currently prohibitive

● Big focus for academia, industry, and government

● Surprising connections to other fields in physics

○ Topological codes ↔ topological phases of matter [Kit03, Kit06]

○ Tensor network codes ↔ AdS/CFT correspondence [PYH+15]
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A bit on Xanadu
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- A photonic quantum computing company with 
eyes set on fault-tolerance

- Full-stack:

- Hardware, including Architecture
- Software and Algorithms

- Located in downtown Toronto, Canada:

A bit on Xanadu
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photonics

GKP qubits

MBQC

Premise of Xanadu’s architecture

Silicon chips, waveguides, fibers
Phase shifters, squeezers
Beamsplitters
Homodyne detectors
Photon Number Resolving detectors

building 
blocks

Probabilistic sources (with cryostats)

Deterministic entanglement generation 
(offline) and gates (via adaptive local 
measurements), at room temperature 

need low-depth physical circuits

want fast, room-temperature, 
deterministic, accessible gates

path to scaling up

benefit of 
existing R&D

nonlocal 
connectivity

A bit on Xanadu
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Quantum error correction 101
● n-qubit Hilbert space (ℂ2)⊗n

● Quantum error correcting code: subspace of (ℂ2)⊗n

● Code parameters ⟦ n,k,d ⟧ 

○ Number of physical qubits n

○ Number of encoded qubits k

○ Code distance d
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Quantum error correction 101
● Pauli matrices X, Y, and Z

● n-qubit Pauli group generated by tensor products of Paulis and I

● Stabilizer codes [Got97]

○ Abelian subgroup S of Pauli group

○ Code (sub)space { |Ψ〉such that  g |Ψ〉= |Ψ〉for all g ∈ S }

● Measure stabilizers to diagnose errors 
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Quantum error correction for photonics
● Measurement-based quantum computing [RBB03] natural for photonics

○ Start with entangled resource state (cluster state)

○ Computation proceeds via single-qubit measurements

● Foliation [BD-CP+16]

○ Input: quantum error-correcting code

○ Output: fault-tolerant cluster state
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Entanglement generation with arbitrary connectivity 

The target: a cluster state—a resource for FT MBQC [RHG06]
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Step 1: Create entangled GKP pairs (“dumbbells”)

GKP sensor states  
(q-naught states)

Entanglement generation with arbitrary connectivity [WBA+20,TMA+21]
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Step 2: Route modes from dumbbells to meet at macronodes
Entanglement generation with arbitrary connectivity
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Step 3: Entangle modes within macronodes
balanced foursplitter: static array of 50:50 beamsplitters

Entanglement generation with arbitrary connectivity
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Step 3: Entangle modes within macronodes

generalized splitters, e.g. linear cascade 

Entanglement generation with arbitrary connectivity
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Step 4: Finish reduction via homodyne measurements
Entanglement generation with arbitrary connectivity
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Step 5: Implement QEC code cluster state of any valence

Implement checks corresponding to, e.g., a quantum code with arbitrary, 
potentially non-local, connectivity—at almost no cost to hardware

Entanglement generation with arbitrary connectivity

6.6.4.3 tiling

X

ZZ

Z Z

Z Z
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// Problem

23

The effective error in a 
stabilizer measurement usually 
scales with the weight of the 
stabilizer.
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// Problem

24

The effective error in a 
stabilizer measurement usually 
scales with the weight of the 
stabilizer.

// Question

Given a code, can we reduce 
the weights of its stabilizers 
while retaining the desirable 
properties of the code?
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Notation
● ⟦ n,k,d ⟧ stabilizer codes

○ Maximum stabilizer weight w

○ Maximum qubit degree q

● CSS codes

○ Parity-check matrices HX and HZ

○ Maximum stabilizer weights wX and wZ

○ Maximum qubit degrees qX and qZ
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Weight reduction review
● Stabilizer code → subsystem / Floquet code [BD-CP+13, BFH+15, HH21, …]

● Layer codes [WB23]

● Hastings’s weight reduction [H16]

○ Works for any stabilizer code

○ Output code has stabilizer weights ≤ 5

○ Constant factor increase in n, constant factor decrease in d

● Hastings’s procedure is complex

○ Essentially because of the requirement of preserving stabilizer commutation
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Weight reduction review
● Weight reduction for classical codes

○ No need to worry about commutation

○ Can achieve check weights ≤ 3 [HHO21]

○ Checks can also be made geometrically local in two dimensions [B23]

● Many quantum code constructions use classical codes as input 

[TZ14, PK21, BE21, …]
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Classical weight reduction
● Let H be the parity-check matrix of an [ n,k,d ] (classical) linear code

● Let h be a row of H with weight w

● Replace h ↦ [ Iw 0 Hw
T ]  (Hw is the parity-check matrix of the w-bit repetition 

code)
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Classical weight reduction: Example
[ 1 1 1 1 0 ]
[ 0 1 1 1 1 ] 

[ 1 0 0 0 0 1 0 0 ]
[ 0 1 0 0 0 1 1 0 ]
[ 0 0 1 0 0 0 1 1 ]
[ 0 0 0 1 0 0 0 1 ]
[ 0 1 1 1 1 0 0 0 ] 

[ 1 0 0 0 0 1 0 0 ]
[ 0 1 0 0 0 1 1 0 ]
[ 0 0 1 0 0 0 1 1 ]
[ 0 0 0 1 0 0 0 1 ]
[ 0 1 1 1 1 0 0 0 ] 

[ 1 0 0 0 0 1 0 0 0 0 0 ]
[ 0 1 0 0 0 1 1 0 0 0 0 ]
[ 0 0 1 0 0 0 1 1 0 0 0 ]
[ 0 0 0 1 0 0 0 1 0 0 0 ]
[ 0 1 0 0 0 0 0 0 1 0 0 ] 
[ 0 0 1 0 0 0 0 0 1 1 0 ] 
[ 0 0 0 1 0 0 0 0 0 1 1 ] 
[ 0 0 0 0 1 0 0 0 0 0 1 ] 

→ 

→ 
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Classical weight reduction
● Algorithm

○ Input: parity-check matrix H

1. Apply weight reduction to each row with weight ≥ 4

2. Transpose the output and repeat 1

3. Undo the transpose

○ Output: new parity-check matrix H’ with row and column weights ≤ 3
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Examples: Hypergraph product codes
● For an input linear code with parity-check matrix H and parameters [ n,k,d ], the 

hypergraph product code HGP( H ) has 

○ parameters ⟦ Θ(n2), Θ(k2), Θ(d) ⟧
○ parity-check matrices HX = ( H ⊗ I I ⊗ HT ) and HZ = ( I ⊗ HT H ⊗ I ) 

● Let r and c be the row and column weights of H

● HGP( H ) has w = r + c and q = max( r,c )

● Classical weight reduction: HGP( H ) ↦ HGP( H’ ) with w’ = 6 and q’ = 3
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Examples: Hypergraph product codes
● H is the parity-check matrix of a [ 6,3,3 ] code, where r = 4 and c = 3

● HGP( H ) has w = 7 and q = 4

● Compare with Hastings’s weight reduction
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Simulations: Xanadu architecture
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Conclusion

34
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Summary
● Classical weight reduction can reduce the stabilizer weights of quantum product 

codes while retaining competitive parameters

● The weight reduced codes have superior performance in Xanadu’s architecture for 

a fault-tolerant photonic quantum computer

● Paper on the arXiv [SGI+24]

○ Also contains a self-contained explanation of Hastings’s weight reduction 

algorithm with lots of examples (and some optimizations)

○ Both algorithms at https://github.com/esabo/CodingTheory 

https://github.com/esabo/CodingTheory
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Open questions
● Can Hastings’s algorithm be improved further?

● How does classical weight reduction compare with the layer codes approach?

● How to compare with the stabilizer → subsystem code approach?

● What is the lowest stabilizer weight compatible with e.g. constant encoding rate?
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Classical weight reduction
Theorem

Let H be the parity-check matrix of an [ n,k,d ] binary, linear code, w be the maximum 

row weight of H, and q be the maximum column weight of H. Then Algorithm 1 outputs 

a parity-check matrix H’ with w’ = q’ = 3 whose code has parameters [ N,k,D ], where N 

= O( max( w, q ) n ) and D ≥ d.

Proof

In the worst case, all checks have weight ≥ 4, which gives the bound on N.

Weight reducing the rows does not change the column weights and vice versa,

so w’ = q’ = 3.
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Classical weight reduction
Bits to the left = old, bits to the right = new.

Suppose c is a codeword of this parity-check matrix.

The image of Hw
T contains only even weight strings.

Therefore c|old is a codeword of the original code.

If c|old = 0 then c|new = 0 as ker Hw
T = 0. 

Hence K = k and D ≥ d. ∎ 

-1
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Examples: Lifted product codes
● The lifted product is a generalization of the hypergraph product to (amongst other 

things) quasi-cyclic code inputs.

● Quasi-cyclic codes are defined using matrices whose entries are elements of a 

polynomial quotient ring. Classical weight reduction generalizes straightforwardly 

to this case.

● Lifted product codes often have superior parameters to hypergraph product 

codes of similar size.
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Examples: Lifted product codes
● Each weight reduction step can be randomized: h ↦ [ Π Iw 0 Hw

T ].

● We find empirically that this can give substantial increases in the distance.


