// Xanadu Presents

Weight Reduced Stabilizer Codes with Lower Overhead

CAP Congress 2024, Western University, London Ontario

Michael Vasmer

X A N A D U Copyright © 2024 Xanadu Quantum Technologies Inc. | Strictly Confidential

Motivation

- Noise severely limits the performance of today's quantum computers
- Quantum error correction enables scalable quantum computation for applications
 - Factoring [Sho96], chemical simulation [BBM+20], optimisation [OML19], ...
 - But space & time overheads are currently prohibitive
- Big focus for academia, industry, and government
- Surprising connections to other fields in physics
 - Topological codes \leftrightarrow topological phases of matter [Kit03, Kit06]
 - Tensor network codes \leftrightarrow AdS/CFT correspondence [PYH+15]

Contents

01 A bit on Xanadu

Quantum error correction for photonicsWeight reduction for stabilizer codes

- A photonic quantum computing company with eyes set on fault-tolerance
- Full-stack:
 - Hardware, including Architecture
 - Software and Algorithms
- Located in downtown Toronto, Canada:

Gaussian ~ "easy" Non-Gaussian ~ hard

Quantum error correction

For photonics

Quantum error correction 101

- *n*-qubit Hilbert space $(\mathbb{C}^2)^{\otimes n}$
- Quantum error correcting code: subspace of (ℂ²)^{∞n}
- Code parameters [[*n*,*k*,*d*]]
 - Number of physical qubits *n*
 - Number of encoded qubits *k*
 - Code distance d

Quantum error correction 101

- Pauli matrices *X*, *Y*, and *Z*
- *n*-qubit Pauli group generated by tensor products of Paulis and *I*
- Stabilizer codes [Got97]
 - Abelian subgroup S of Pauli group
 - Code (sub)space { $|\Psi\rangle$ such that $g |\Psi\rangle = |\Psi\rangle$ for all $g \in S$ }
- Measure stabilizers to diagnose errors

Quantum error correction for photonics

- Measurement-based quantum computing [RBB03] natural for photonics
 - Start with entangled resource state (cluster state)
 - Computation proceeds via single-qubit measurements
- Foliation [BD-CP+16]
 - Input: quantum error-correcting code
 - Output: fault-tolerant cluster state

Entanglement generation with arbitrary connectivity

The target: a cluster state—a resource for FT MBQC [RHG06]

Entanglement generation with arbitrary connectivity [WBA+20, TMA+21] Step 1: Create entangled GKP pairs ("dumbbells")

Entanglement generation with arbitrary connectivity Step 3: Entangle modes within macronodes

balanced foursplitter: static array of 50:50 beamsplitters

Entanglement generation with arbitrary connectivity Step 3: Entangle modes within macronodes

(X) X A N A D U Copyright © 2024 Xanadu Quantum Technologies Inc. | Strictly Confidential

Entanglement generation with arbitrary connectivity Step 4: Finish reduction via homodyne measurements

(X) X \wedge N \wedge D U Copyright © 2024 Xanadu Quantum Technologies Inc. | Strictly Confidential

Entanglement generation with arbitrary connectivity Step 5: Implement QEC code cluster state of any valence

Implement checks corresponding to, e.g., a quantum code with arbitrary, potentially non-local, connectivity—at almost no cost to hardware

Weight reduction

For stabilizer codes

// Problem

The effective error in a stabilizer measurement usually scales with the weight of the stabilizer.

// Problem

The effective error in a stabilizer measurement usually scales with the weight of the stabilizer.

// Question

Given a code, can we reduce the weights of its stabilizers while retaining the desirable properties of the code?

Notation

- [[*n,k,d*]] stabilizer codes
 - Maximum stabilizer weight w
 - Maximum qubit degree q
- CSS codes
 - Parity-check matrices H_{χ} and H_{Z}
 - Maximum stabilizer weights w_{χ} and w_{Z}
 - Maximum qubit degrees q_{χ} and q_{Z}

Weight reduction review

- Stabilizer code \rightarrow subsystem / Floquet code [BD-CP+13, BFH+15, HH21, ...]
- Layer codes [WB23]
- Hastings's weight reduction [H16]
 - Works for any stabilizer code
 - Output code has stabilizer weights ≤ 5
 - Constant factor increase in *n*, constant factor decrease in *d*
- Hastings's procedure is complex
 - Essentially because of the requirement of preserving stabilizer commutation

Weight reduction review

- Weight reduction for classical codes
 - No need to worry about commutation
 - Can achieve check weights \leq 3 [HHO21]
 - Checks can also be made geometrically local in two dimensions [B23]
- Many quantum code constructions use classical codes as input [TZ14, PK21, BE21, ...]

Classical weight reduction

- Let *H* be the parity-check matrix of an [*n*,*k*,*d*] (classical) linear code
- Let *h* be a row of *H* with weight *w*
- Replace $h \mapsto [I_w \cap H_w^\top]$ (H_w is the parity-check matrix of the *w*-bit repetition code)

$$\begin{pmatrix} v_1 & \cdots & v_w \\ (1 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix} \mapsto \begin{pmatrix} v_1 & v_2 & \cdots & v_{w-1} & v_w & \cdots & 1 & 1 \\ 1 & & & \cdots & 1 & 1 & & \\ & & 1 & & \cdots & 1 & 1 & & \\ & & & \ddots & & & & \ddots & & \\ & & & & 1 & \cdots & & & 1 & 1 \\ & & & & & 1 & \cdots & & & 1 & 1 \end{pmatrix}$$

Classical weight reduction: Example

Classical weight reduction

- Algorithm
 - Input: parity-check matrix H
 - 1. Apply weight reduction to each row with weight ≥ 4
 - 2. Transpose the output and repeat 1
 - 3. Undo the transpose
 - Output: new parity-check matrix H' with row and column weights ≤ 3

Examples: Hypergraph product codes

- For an input linear code with parity-check matrix *H* and parameters [*n*,*k*,*d*], the hypergraph product code HGP(*H*) has
 - parameters [[$\Theta(n^2)$, $\Theta(k^2)$, $\Theta(d)$]]
 - parity-check matrices $H_{\chi} = (H \otimes I I \otimes H^{T})$ and $H_{Z} = (I \otimes H^{T} H \otimes I)$
- Let *r* and *c* be the row and column weights of H
- HGP(H) has w = r + c and $q = \max(r, c)$
- Classical weight reduction: HGP(H) \mapsto HGP(H') with w' = 6 and q' = 3

Examples: Hypergraph product codes

- *H* is the parity-check matrix of a [6,3,3] code, where r = 4 and c = 3
- HGP(H) has w = 7 and q = 4

$\mathcal{C}(H)$	$\mathrm{HGP}(H)$	R	$\mathrm{HGP}(ilde{H})$	R	$\mathrm{HGP}(ilde{H}^{(c)})$	R
[6, 3, 3]	$\llbracket 45,9,3 \rrbracket$	0.200	$[\![117,9,4]\!]$	0.077	$[\![65,9,4]\!]$	0.138

• Compare with Hastings's weight reduction

$\mathcal{C}(H)$	$\mathrm{HGP}(H)$	R	(w_X,q_X,w_Z,q_Z)	$\widetilde{\mathrm{HGP}}(H)$	R	$(ilde w_X, ilde q_X, ilde w_Z, ilde q_Z)$
[6,3,3]	$[\![45,9,3]\!]$	0.200	(7, 4, 7, 4)	$[\![2892,9,5]\!]$	0.003	(6,6,6,3)

Simulations: Xanadu architecture

Conclusion

Summary

- Classical weight reduction can reduce the stabilizer weights of quantum product codes while retaining competitive parameters
- The weight reduced codes have superior performance in Xanadu's architecture for a fault-tolerant photonic quantum computer
- Paper on the arXiv [SGI+24]
 - Also contains a self-contained explanation of Hastings's weight reduction algorithm with lots of examples (and some optimizations)
 - Both algorithms at <u>https://github.com/esabo/CodingTheory</u>

Open questions

- Can Hastings's algorithm be improved further?
- How does classical weight reduction compare with the layer codes approach?
- How to compare with the stabilizer \rightarrow subsystem code approach?
- What is the lowest stabilizer weight compatible with e.g. constant encoding rate?

- [Sho96] Peter W. Shor, "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM Journal on Computing. <u>https://doi.org/10.1137/S0097539795293172</u>
- [BBM+20] Bela Bauer, Sergey Bravyi, Mario Motta & Garnet Kin-Lic Chan "Quantum Algorithms for Quantum Chemistry and Quantum Materials Science", *Chemical Reviews*. <u>https://doi.org/10.1021/acs.chemrev.9b00829</u>
- [OML19] Román Orús, Samuel Mugel & Enrique Lizaso, "Quantum computing for finance: Overview and prospects", *Reviews in Physics*. <u>https://doi.org/10.1016/j.revip.2019.100028</u>

- [Kit03] A. Yu. Kitaev, "Fault-tolerant quantum computation by anyons", Annals of Physics. <u>https://doi.org/10.1016/S0003-4916(02)00018-0</u>
- [Kit06] Alexei Kitaev, "Anyons in an exactly solved model and beyond", *Annals of Physics*. <u>https://doi.org/10.1016/j.aop.2005.10.005</u>
- [PYH+15] Fernando Pastawski, Beni Yoshida, Daniel Harlow & John Preskill, "Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence", *Journal of High Energy Physics*. https://doi.org/10.1007/JHEP06(2015)149

- [Got97] Daniel Gottesman, "Stabilizer Codes and Quantum Error Correction", *PhD thesis (Caltech)*. <u>https://doi.org/10.48550/arXiv.quant-ph/9705052</u>
- [RBB03] Robert Raussendorf, Daniel E. Browne & Hans J. Briegel, "Measurement-based quantum computation on cluster states", *Physical Review A*. <u>https://doi.org/10.1103/PhysRevA.68.022312</u>
- [BD-CP+16] A. Bolt, G. Duclos-Cianci, D. Poulin & T. M. Stace, "Foliated Quantum Error-Correcting Codes", *Physical Review Letters*. <u>https://doi.org/10.1103/PhysRevLett.117.070501</u>

- [RHG06] R. Raussendorf, J. Harrington & K. Goyal, "A fault-tolerant one-way quantum computer", *Annals of Physics*. <u>https://doi.org/10.1016/j.aop.2006.01.012</u>
- [WBA+20] Blayney W. Walshe, Ben Q. Baragiola, Rafael N. Alexander & Nicolas C. Menicucci, "Continuous-variable gate teleportation and bosonic-code error correction", *Physical Review A*. <u>https://doi.org/10.1103/PhysRevA.102.062411</u>
- [TMA+21] Ilan Tzitrin, Takaya Matsuura, Rafael N. Alexander, et al., "Fault-Tolerant Quantum Computation with Static Linear Optics", *PRX Quantum*. <u>https://doi.org/10.1103/PRXQuantum.2.040353</u>

- [BD-CP+13] Sergey Bravyi, Guillaume Duclos-Cianci, David Poulin & Martin Suchara, "Subsystem surface codes with three-qubit check operators", *Quantum Information & Computation*. <u>https://doi.org/10.48550/arXiv.1207.1443</u>
- [BFH+15] Dave Bacon, Steven T. Flammia, Aram W. Harrow & Jonathan Shi, "Sparse Quantum Codes from Quantum Circuits", *IEEE Transactions on Information Theory*. <u>https://doi.org/10.1145/2746539.2746608</u>
- [HH21] Matthew B. Hastings & Jeongwan Haah, "Dynamically Generated Logical Qubits", *Quantum*. <u>https://doi.org/10.22331/q-2021-10-19-564</u>
- [WB23] Dominic J. Williamson, Nouédyn Baspin, "Layer Codes", arXiv preprint. https://doi.org/10.48550/arXiv.2309.16503

- [H16] M. B. Hastings, "On Quantum Weight Reduction", *arXiv preprint*. https://doi.org/10.48550/arXiv.2102.10030
- [HHO21] Matthew B. Hastings, Jeongwan Haah & Ryan O'Donnell, "Fiber Bundle Codes: Breaking the N^{1/2}polylog(N) Barrier for Quantum LDPC Codes", STOC '21. <u>https://doi.org/10.1145/3406325.3451005</u>
- [B23] Nouédyn Baspin, "On combinatorial structures in linear codes", *arXiv* preprint. <u>https://doi.org/10.48550/arXiv.2309.16411</u>
- [TZ14] Jean-Pierre Tillich & Gilles Zemor, "Quantum LDPC codes with positive rate and minimum distance proportional to n^{1/2}", *IEEE Transactions on Information Theory*. <u>https://doi.org/10.1109/TIT.2013.2292061</u>

- [PK21] Pavel Panteleev & Gleb Kalachev, "Quantum LDPC Codes with Almost Linear Minimum Distance", IEEE Transactions on Information Theory. <u>https://doi.org/10.1109/TIT.2021.3119384</u>
- [BE21] Nikolas P. Breuckmann & Jens N. Eberhardt, "Balanced Product Quantum Codes", IEEE Transactions on Information Theory. <u>https://doi.org/10.1109/TIT.2021.3097347</u>
- [SGI+24] Eric Sabo, Lane G. Gunderman, Benjamin Ide, Michael Vasmer, Guillaume Dauphinais, "Weight Reduced Stabilizer Codes with Lower Overhead", *arXiv* preprint. <u>https://doi.org/10.48550/arXiv.2402.05228</u>

Thank you

xanadu.ai Twitter \rightarrow @xanadu.ai Michael Vasmer michael.vasmer@xanadu.ai (\mathbf{X}) X A N A D U

Classical weight reduction

Theorem

Let *H* be the parity-check matrix of an [n,k,d] binary, linear code, *w* be the maximum row weight of *H*, and *q* be the maximum column weight of *H*. Then Algorithm 1 outputs a parity-check matrix *H'* with w' = q' = 3 whose code has parameters [N,k,D], where N = O(max(w, q) n) and $D \ge d$.

Proof

In the worst case, all checks have weight \geq 4, which gives the bound on *N*.

Weight reducing the rows does not change the column weights and vice versa, so w' = q' = 3.

Classical weight reduction

Bits to the left = old, bits to the right = new.

Suppose *c* is a codeword of this parity-check matrix.

$$0 = \begin{pmatrix} f & H_{w_i-1}^{\mathrm{T}} \end{pmatrix} c = \begin{pmatrix} f & H_{w_i-1}^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} c \big|_{\mathrm{old}} \\ c \big|_{\mathrm{new}} \end{pmatrix} = fc \big|_{\mathrm{old}} + H_{w_i-1}^{\mathrm{T}}c \big|_{\mathrm{new}}$$

$$H_{w_i-1}^{\mathrm{T}}c\big|_{\mathrm{new}} = fc\big|_{\mathrm{old}} = c\big|_{\mathrm{supp}\,h_i}$$

The image of H_w^T contains only even weight strings. Therefore $c|_{old}$ is a codeword of the original code. If $c|_{old} = 0$ then $c|_{new} = 0$ as ker $H_w^T = 0$. Hence K = k and $D \ge d$. $f|_{\sup h_i}$

Examples: Lifted product codes

- The lifted product is a generalization of the hypergraph product to (amongst other things) quasi-cyclic code inputs.
- Quasi-cyclic codes are defined using matrices whose entries are elements of a polynomial quotient ring. Classical weight reduction generalizes straightforwardly to this case.
- Lifted product codes often have superior parameters to hypergraph product codes of similar size.

Examples: Lifted product codes

- Each weight reduction step can be randomized: $h \mapsto [\Pi I_w \circ H_w^T]$.
- We find empirically that this can give substantial increases in the distance.

$\mathcal{C}(A)$	LP(A)	R	$\mathcal{C}(ilde{A})$	$\mathrm{LP}(ilde{A})$	R	$\mathcal{C}(ilde{A}^{(c)})$	$\mathrm{LP}(ilde{A}^{(c)})$	R
$\left[52,27,6 ight]$	$[[260, 58, \le 6]]$	0.223	$[130, 27, 12 \to 14]$	$[[2132, 58, \le 14]]$	0.027	$[78,27,6\rightarrow 8]$	$[[676, 58, \le 8]]$	0.086
$\left[28,9,10\right]$	$[[175, 19, \le 10]]$	0.109	$[91,9,28\rightarrow 33]$	$[[2191, 19, \le 39]]$	0.009	$[49,9,14\rightarrow18]$	$[[595, 19, \le 18]]$	0.032
$\left[36,11,12\right]$	$[[225, 21, \le 12]]$	0.093	$[117, 11, 36 \to 40]$	$[[2817, 21, \leq 48]]$	0.007	$[63,11,18\rightarrow 22]$	$[[765, 21, \le 22]]$	0.027
$\left[68,19,18\right]$	$[[425, 29, \le 18]]$	0.068	$[221, 19, 54 \to 62]$	$[[5321, 29, \le 74]]$	0.005	$[119,19,32\rightarrow34]$	$[[1445, 29, \le 34]]$	0.020
$\left[76,21,20\right]$	$[[475, 31, \le 20]]$	0.065	$[247, 21, 60 \to 68]$	$[[5947, 31, \le 93]]$	0.005	$[133, 21, 37 \to 38]$	$[[1615, 31, \le 38]]$	0.019
$\left[124, 33, 24\right]$	$[[775, 43, \le 24]]$	0.055	$[403, 33, 71 \rightarrow 84]$	$[[9703, 43, \le 115]]$	0.004	$[217, 33, 44 \rightarrow 48]$	$[[2635, 43, \le 48]]$	0.016