Choi-Defined Resource Theories

Elia Zanoni Carlo Maria Scandolo

Department of Mathematics & Statistics, University of Calgary

Institute for Quantum Science and Technology, University of Calgary

CAP Congress 2024
Quantum objects give an advantage over ordinary ones.
Quantum does it better!

- Quantum objects give an **advantage** over ordinary ones.
- Unifying theme in quantum information: **quantum is a resource**.
Quantum does it better!

- Quantum objects give an **advantage** over ordinary ones.
- Unifying theme in quantum information: **quantum is a resource**.

This idea is made mathematically rigorous with **resource theories**.
Everything starts with a restriction...
Everything starts with a restriction...

Only a subset of operations can be performed (free operations), dictated by the physical setting:
Everything starts with a restriction…

Only a subset of operations can be performed (free operations), dictated by the physical setting:

- the identity channel is free;
Everything starts with a restriction…

Only a subset of operations can be performed (free operations), dictated by the physical setting:

- the identity channel is free;
- swapping two resource systems is free;
Everything starts with a restriction...

Only a subset of operations can be performed (free operations), dictated by the physical setting:

- the identity channel is free;
- swapping two resource systems is free;
- the composition of free operations is free;
Everything starts with a restriction…

Only a subset of operations can be performed (free operations), dictated by the physical setting:

- the identity channel is free;
- swapping two resource systems is free;
- the composition of free operations is free;
- the tensor product of free operations is free;
Everything starts with a restriction...

Only a subset of operations can be performed (free operations), dictated by the physical setting:

- the identity channel is free;
- swapping two resource systems is free;
- the composition of free operations is free;
- the tensor product of free operations is free;
- discarding a system is free.
States as resources

Free states: states that can be prepared at no cost
States as resources

Free states: states that can be prepared at no cost

Main question

Can ρ be converted into σ with free operations?

Indeed, we can reach a larger set of states from it.

What if we have just a set of free states? How can we reconstruct the free operations too?

CRNG operations [Chitambar & Gour]

Operations sending free states to free states even when they're applied only to half of a bipartite free state.
States as resources

Free states: states that can be prepared at no cost

Main question
Can ρ be converted into σ with free operations?

- If this happens, ρ is *more valuable* than σ...
Free states: states that can be prepared at no cost

Main question

Can ρ be converted into σ with free operations?

- If this happens, ρ is more valuable than σ...
- Indeed, we can reach a larger set of states from it.
States as resources

Free states: states that can be prepared at no cost

Main question

Can ρ be converted into σ with free operations?

- If this happens, ρ is **more valuable** than σ...
- Indeed, we can reach a larger set of states from it.

What if we have just a set of free states?
States as resources

Free states: states that can be prepared at no cost

Main question

Can ρ be converted into σ with free operations?

- If this happens, ρ is more valuable than σ...
- Indeed, we can reach a larger set of states from it.

What if we have just a set of free states?
How can we reconstruct the free operations too?
Free states: states that can be prepared at no cost

Main question
Can ρ be converted into σ with free operations?

- If this happens, ρ is more valuable than σ...
- Indeed, we can reach a larger set of states from it.

What if we have just a set of free states?
How can we reconstruct the free operations too?

CRNG operations [Chitambar & Gour]
Operations sending free states to free states even when they’re applied only to half of a bipartite free state.
Use the Choi isomorphism to define free operations.
Use the Choi isomorphism to define free operations.

- N_{BA} is the Choi matrix of a quantum channel $\mathcal{N}_{A\rightarrow B}$ iff $\text{tr}_B N_{BA} = 1_A$.

Idea [Zanoni & CMS]
Choi isomorphism

Idea [Zanoni & CMS]

Use the Choi isomorphism to define free operations.

- N_{BA} is the Choi matrix of a quantum channel $\mathcal{N}_{A\rightarrow B}$ iff $\text{tr}_B N_{BA} = 1_A$.
- The Choi matrix of the identity \mathcal{I}_A is $\Phi_{AA'} = \sum_{j,k} |j\rangle \langle k|_A \otimes |j\rangle \langle k|_{A'}$.

Elia Zanoni, Carlo Maria Scandolo
Choi-Defined Resource Theories
Use the Choi isomorphism to define free operations.

- N_{BA} is the Choi matrix of a quantum channel $\mathcal{N}_{A\rightarrow B}$ iff $\text{tr}_B N_{BA} = 1_A$.
- The Choi matrix of the identity \mathcal{I}_A is $\Phi_{AA'} = \sum_{j,k} |j\rangle \langle k|_A \otimes |j\rangle \langle k|_{A'}$.

The Choi matrix of $\mathcal{N}_{B\rightarrow C} \circ \mathcal{M}_{A\rightarrow B}$ is given by the link product of their Choi matrices N_{CB} and M_{BA}:

$$N_{CB} \ast M_{BA} = \text{tr}_B \left[(N_{CB} \otimes 1_A) \left(1_C \otimes M_{BA}^{T_B} \right) \right].$$
The **CD operations** are all and only the quantum channels such that their renormalized Choi matrix is a free state.

Theorem

The answer is positive iff

1. $d_A \Phi_{AA'}$ is free;
2. If ρ_A and μ_{BA} are free states, and μ_{BA} is the renormalized Choi matrix of a quantum channel, then $d_A \mu_{BA}^{\ast} \rho_A$ is a free state.

In this case CD operations coincide with CRNG operations.
CD operations [Zanoni & CMS]

The CD operations are all and only the quantum channels such that their renormalized Choi matrix is a free state.

Can we always construct a resource theory in this way?
The CD operations are all and only the quantum channels such that their renormalized Choi matrix is a free state.

Can we always construct a resource theory in this way?

Theorem

The answer is positive iff

\[\frac{1}{d_A} \Phi_{AA'} \text{ is free}; \]
CD operations [Zanoni & CMS]
The CD operations are all and only the quantum channels such that their renormalized Choi matrix is a free state. Can we always construct a resource theory in this way?

Theorem
The answer is positive iff

1. $\frac{1}{d_A} \Phi_{AA'}$ is free;
2. If ρ_A and μ_{BA} are free states, and μ_{BA} is the renormalized Choi matrix of a quantum channel, then $d_A \mu_{BA} \ast \rho_A$ is a free state.
CD operations [Zanoni & CMS]

The CD operations are all and only the quantum channels such that their renormalized Choi matrix is a free state.

Can we always construct a resource theory in this way?

Theorem

The answer is positive iff

1. \(\frac{1}{d_A} \Phi_{AA'} \) is free;
2. If \(\rho_A \) and \(\mu_{BA} \) are free states, and \(\mu_{BA} \) is the renormalized Choi matrix of a quantum channel, then \(d_A \mu_{BA} * \rho_A \) is a free state.

In this case CD operations coincide with CRNG operations.
Start from a set of free states...
Conclusions

- Start from a set of free states...
- Free operations as those whose Choi matrix is a free state (after renormalization).
Conclusions

- Start from a set of free states...
- Free operations as those whose Choi matrix is a free state (after renormalization).
- We determined necessary and sufficient conditions for this construction.
Conclusions

- Start from a set of free states...
- Free operations as those whose Choi matrix is a free state (after renormalization).
- We determined necessary and sufficient conditions for this construction.
- In such cases, these operations are CRNG operations...
Start from a set of free states...
Free operations as those whose Choi matrix is a free state (after renormalization).
We determined necessary and sufficient conditions for this construction.
In such cases, these operations are CRNG operations...
thus providing a concrete construction for CRNG operations.
Conclusions

- Start from a set of free states...
- Free operations as those whose Choi matrix is a free state (after renormalization).
- We determined necessary and sufficient conditions for this construction.
- In such cases, these operations are CRNG operations...
- thus providing a concrete construction for CRNG operations.

Many resource theories have this property: NPT and SEP entanglement, magic, imaginarity...
