

Charting the Higgs potential with pair-production of Higgs bosons at the ATLAS experiment

Canadian Association of Physicists Congress, May 27th-31st 2024

Marco Valente

Particle Physics department TRIUMF, Canada's particle accelerator centre <u>marco.valente@cern.ch</u>

Marco Valente Particle Physics department TRIUMF, Canada's particle acceler Centre

Introduction (1)

What is the Higgs boson and why its discovery (2012) was important

- Higgs boson: massive scalar particle generated by the spontaneous breaking of the electroweak gauge symmetry.
- Ok... but what does this mean? 🙂
 - Take the massless SM lagrangian \mathscr{L}^{SM} , add a scalar particle and a "a mexican hat" potential:

 $V(\phi^{\dagger}\phi) = -\mu^2 \phi^{\dagger}\phi + \lambda (\phi^{\dagger}\phi)^2$

- Around the new potential minimum, electroweak bosons (W/Z) and fermions acquire masses. A massive scalar appears (the Higgs boson).
- This works surprisingly well (so far)! All observed couplings (W,Z,b,t,τ) are consistent with the SM Higgs mechanism!

Valente

Varco

Is this the end of the story?

Have we understood everything about the Higgs?

- Simple answer: **No!**
- The simple existence of the Higgs in the SM is **really unique and puzzling:**
 - Are there **more Higgs bosons**?
 - Why is the **Higgs mass so small**?
 - Is it really a Mexican hat potential shape or something else?

The Higgs potential in the history of the universe Electroweak baryogenesis and vacuum metastability

- The Higgs potential is deeply related to the baryogenesis problem.
 - A potential shape beyond the SM could explain the overabundance of matter in the universe (EWK baryogenesis)!
- Also, important question about the stability of our current universe vacuum state!

The Higgs potential in the history of the universe Electroweak baryogenesis and vacuum metastability

- The Higgs potential is deeply related to the baryogenesis problem.
 - A potential shape beyond the SM could explain the overabundance of matter in the universe (EWK baryogenesis)!
- Also, important question about the stability of our current universe vacuum state!

Valente

Vlarco

The Higgs potential in the history of the universe Electroweak baryogenesis and vacuum metastability

- The Higgs potential is deeply related to the baryogenesis problem.
 - A potential shape beyond the SM could explain the overabundance of matter in the universe (EWK baryogenesis)!
- Also, important question about the stability of our current universe vacuum state!

Current measurements suggest that we live in a **metastable** universe that will decay in future!

Measuring the Higgs potential is critical to fully understand how the universe started... and also how it will finish.

But so... how can we measure the Higgs potential?

How to measure the Higgs potential

Multiple-Higgs events

We **need to access the** λ **parameter** of the Higgs potential.

$$V(h) = -\mu^2 |\phi|^2 + \lambda |\phi|^4 \simeq \frac{1}{2} m_h^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$

sics department

Marco Valente

How to measure the Higgs potential

Multiple-Higgs events

We **need to access the** λ **parameter** of the Higgs potential.

$$V(h) = -\mu^2 |\phi|^2 + \lambda |\phi|^4 \simeq \frac{1}{2} m_h^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$

Tells us where the minimum of the potential is $\Rightarrow m_H = \sqrt{2\lambda} v \approx 125$ GeV means $\lambda_{SM} \approx 0.13$

Valente

arco

How to measure the Higgs potential

Multiple-Higgs events

We need to access the λ parameter of the Higgs potential.

$$V(h) = -\mu^2 |\phi|^2 + \lambda |\phi|^4 \simeq \frac{1}{2} m_h^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$

Tells us where the minimum of the potential is $\Rightarrow m_H = \sqrt{2\lambda} v \approx 125$ GeV means $\lambda_{SM} \approx 0.13$

Access to λ through **3-Higgs** interactions

We generally look more at κ_{λ} rather than λ directly

$$\kappa_{\lambda} \equiv \frac{\lambda}{\lambda_{SM}}$$

How to measure the Higgs potential

Multiple-Higgs events

We need to access the λ parameter of the Higgs potential.

Valente sics departmen

0 0

Vlar

HH production at the LHC

Non-resonant HH production

Marco Valente Particle Physics department TRIUMF, Canada's particle acc

The HH final states

- With $\sigma(HH) \approx 31$ fb and $\mathscr{L}^{int} = 139$ fb⁻¹, ~4k HH events produced in the LHC Run 2.
 - Maximal sensitivity requires multiple analysis channels targeting lacksquaredifferent decays.

HH detection at ATLAS

To observe *HH* decaying to $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$ channels we **need to identify b**quarks, τ -leptons and photons.

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

Physics department TRIUMF, Canada's particle accelerato

Marco Valente

HH final state reconstruction

To observe *HH* decaying to $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$ channels we **need to identify b**quarks, τ -leptons and photons.

• <u>b-jets:</u> collimated **spray of particles** containing a displaced vertex (Bhadron decay). Machine Learning **b-tagging** ulletalgorithms for identification. **Inner Detector** Muon detectors

To observe *HH* decaying to $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$ channels we **need to identify b**quarks, τ -leptons and photons.

- <u>b-jets</u>: collimated spray of particles containing a displaced vertex (Bhadron decay).
 - Machine Learning **b-tagging algorithms** for identification.
- <u>Photons:</u> isolated **ECAL energy deposit** without associated track.

Marco Valente ^Physics department FRIUMF, Canada's particle accelerato Centre

To observe *HH* decaying to $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$ channels we **need to identify b**quarks, τ -leptons and photons.

Muon detectors

- <u>b-jets:</u> collimated **spray of particles** containing a **displaced vertex** (Bhadron decay).
 - Machine Learning **b-tagging algorithms** for identification.
- <u>Photons:</u> isolated ECAL energy deposit without associated track.

- 1. <u>Hadronic τ </u> (τ_{had}): jet with low number of tracks identified with τ tagger.
- 2. <u>Leptonic τ </u> (τ_{lep}): **muon** (μ) or **electron** (*e*) 11

Marco Valente ^{Physics} department FRIUMF, Canada's particle accele

Inner Detector

To observe *HH* decaying to $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$ channels we **need to identify b**quarks, τ -leptons and photons.

Muon detectors

- <u>b-jets:</u> collimated **spray of particles** containing a **displaced vertex** (Bhadron decay).
 - Machine Learning **b-tagging algorithms** for identification.
- <u>Photons:</u> isolated ECAL energy deposit without associated track.

- 1. <u>Hadronic τ </u> (τ_{had}): jet with low number of tracks identified with τ tagger.
- 2. <u>Leptonic τ </u> (τ_{lep}): muon (μ) or electron (e) 11

Marco Valente ^ahysics department FRIUMF, Canada's particle acceler Centre

Inner Detector

arco Valente rticle Physics department IUMF, Canada's particle acceler ntre

$HH \rightarrow b\bar{b}\gamma\gamma$ analysis (1)

Analysis selection and categories

- Very tiny HH BR (0.26%), but excellent acceptance (γγ triggers) and low backgrounds.
- <u>Selection:</u> **2 photons** + **2 b-jets** (77% eff.)
 - BDTs used to separate backgrounds and signals.
- <u>Categories</u>: **7 regions** split in $m^*_{b\bar{b}\gamma\gamma}$ (350 GeV) and BDT output to enhance sensitivity to signal.

Marco Valente Particle Physics department TRIUMF, Canada's particle accelerator Centre

 $HH \rightarrow b\bar{b}\gamma\gamma$ analysis (2)

Background estimation and results

<u>Final observation</u>: simultaneous likelihood fit of $m_{\gamma\gamma}$ in 7 categories.

• Main backgrounds: $\gamma\gamma$ + jets and SM $H \rightarrow \gamma\gamma$.

• No significant excess above SM prediction.

Marco Valente Particle Physics department RIUMF, Canada's particle acceler Centre

$HH \rightarrow b\bar{b}\tau\tau$ analysis (1)

Event selection and analysis categories

- Good trade between HH BR (7.3%) and moderate background.
- <u>Selection:</u> **2 b-jets** (77% eff.) and 2 τ -leptons (τ_{had} and τ_{lep})
 - 9 categories: split in τ decay mode (had-had, lep-had) and HH production mode (ggF VBF).
- BDT outputs in categories are simultaneously fit to separate background and signals.
- No significant excess observed.

$HH \rightarrow b\bar{b}b\bar{b}$ analysis (126 fb⁻¹)

Phys. Rev. D 105 (2022) 092002

Run: 362619 Event: 524614423 2018-10-03 08:06:34 CEST

$HH \rightarrow b\bar{b}b\bar{b}$ analysis (1)

Selection and analysis categories

- Largest HH BR (34%), but large multi-jet background and challenging jet-pairing combinatorics.
- <u>Selection:</u> at least **4 b-jets** (77% eff.)
 - VBF selection: **two additional jets** close to the beam ($|\Delta \eta_{ii}| > 3$).
- <u>Background estimation:</u> fully data-driven with machine-learning-assisted ABCD method.
- <u>Categories</u>: 6 for ggF and 2 for VBF to enhance signal sensitivity.
- No significant excess observed.

Phys. Rev. D 105 (2022) 092002

Marco Valente Particle Physics department TRIUMF, Canada's particle acc Centre

Combining everything together...

Valente

00

Higgs self-coupling constraints

Allowed κ_{λ} ranges

- What did we learn about the Higgs selfcoupling?
- κ_{λ} scan: upper-limits on σ_{HH} assuming signal normalisation and kinematic at each value of κ_{λ}

- Observed allowed κ_{λ} range is measured to be $-0.6 < \kappa_{\lambda} < 6.6$
- For the standard model point, combined observed (expected) 95% CL upper limit: $\mu_{SM}^{95\%} = 2.4$ (2.9)!

Very close to the SM signal! We are getting close to regions with exciting BSM physics scenarios!

And for VBF (k_{2V}) ?

Boosted VBF $HH \rightarrow b\bar{b}b\bar{b}$ analysis (139 fb⁻¹) <u>arXiv:2404.17193</u> bbboost h Qlarge-radius jet (R=1.0) $b\bar{b}$

Boosted VBF $HH \rightarrow b\bar{b}b\bar{b}$ Analysis strategy

- Extremely high sensitivity to k_{2V} variations due to kinematic boost of Higgs bosons.
 - Less statistics, but also much less backgrounds!
- *H* → *bb̄* identified through dedicated machine-learning double-b tagger (ATL-PHYS-PUB-2020-019).
- <u>Selection:</u>
 - **2 large-radius jets** tagged as $H \rightarrow b\bar{b}$ (60% eff.)
 - 2 small-radius jets close to the beam $(|\Delta \eta(j,j)| > 3)$
- <u>Background estimation:</u> fully data-driven ABCD method.
- No excess above SM prediction.

Marco Valente Physics department TRIUMF, Canada's particle acce Centre

Boosted VBF $HH \rightarrow b\bar{b}b\bar{b}$ kav limits

- At 95% CL: $\kappa_{2V} \in [0.52, 1.52]$ (boosted-only)!
 - Much more sensitive than resolved $b\bar{b}b\bar{b}$, $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ ($\kappa_{2V} \in [0.1, 2.0]$)!
- Even more sensitive than expected sensitivity at the HL-LHC (3000 fb⁻¹)! A huge step forward in just a couple of years!

So no unexpected Higgs self-coupling values for now.

Can we improve the precision in future?

Marco Valente

Run 3 ATLAS improvements

More data, better reconstruction and triggers

- Expect a large number of improvements by the end of Run 3 (2022-2025).
 - More data (150 250 fb⁻¹in Run 3) and +10% $\sigma(HH)$ with $\sqrt{s} = 13.6$ TeV
 - b-tagging largely improved with Graph Neural Networks!
 - Triggers significantly improved (e.g. asymmetric $HH \rightarrow b\bar{b}b\bar{b}$ triggers)!

Valente

00

Conclusion and prospects

- The Higgs sector is UNIQUE and still largely unexplored!
 - Shape of the **Higgs potential essential** to fully understand EWSB and the evolution of the universe.

Only started to understand the Higgs!

- **HH searches** at the (HL-)LHC are currently the **best tool** to constrain $V(\phi)$:
 - Huge improvements on κ_{λ} and κ_{2V} constraints achieved with Run 2 ATLAS dataset.
 - 5σ discovery achievable at the HL-LHC (ATLAS+CMS).
 - More improvements are expected for Run 3 (more data, better triggers, better physics object identification, etc.).

If something is unexpected in the Higgs potential, Run 3 might already reveal this to us! 27

Thank you for your attention!

Backup

Particle Physics department TRIUMF, Canada's particle a Centre

Marco Valente

Challenges of HH production at the LHC

The unbearable lightness of HH

Updated HL-LHC projections for HH

ATLAS-PHYS-PUB-2022-053

- Assuming Run 2 detector performance and expected reduction of systematics, statistical evidence (3.4 σ) is expected for SM HH ($\kappa_{\lambda} = 1$) with 3000 fb⁻¹.
 - κ_{λ} constrained to [0.5,1.6] at 68% CL.
- Reduction of systematic uncertainties could bring us close to discovery (4.9 σ with stat. only). And we still have to combine with CMS!

Aarco Valente nysics department RIUMF, Canada's particle acc entre

Updated HL-LHC projections for HH

ATLAS-PHYS-PUB-2022-053

Marco Valente Physics department TRIUMF, Canada's particle accelerat Centre

$HH \rightarrow b\bar{b}b\bar{b}$ analysis

Background estimation

- <u>Background</u>: QCD multijet (90%) and *tt* (10%) estimated using a **fully data-driven** method.
 - Machine-learning algorithm learns weight w(x), where x are different event kinematic variables, to reweight CR1- 2b into CR1-4b events
 - w(x) applied to SR-2b to obtain SR-4b background estimation.
- Alternative w'(x) from CR2 used to estimate systematics uncertainties.

Marco Valente ²article Physics department ⁷RIUMF, Canada's particle ac Centre

Marco Valente Particle Physics department TRIUMF, Canada's particle accelerator Centre

$HH \rightarrow b\bar{b}\tau\tau$ analysis

Analysis categories

 $\tau_{had} \; \tau_{had} \; SR$

 $\tau_{lep} \tau_{had} SLT SR$

τ_{lep} τ_{had} LTT SR

$HH \rightarrow b\bar{b}\tau\tau$ analysis

Background estimation and results

- Dominant backgrounds: $t\overline{t}$ and $Z(\rightarrow \tau \tau)$ +bb/bc/cc)
- Final observation: binned fit of MVA scores in all 9 categories.
- No significant excess above SM prediction observed.

Results

potential with osons at the

Charting the production of

²article Physics department FRIUMF, Canada's <u>particle</u> a

Marco Valente

periment

202

 Statistical combination maximises sensitivity to SM (and BSM) HH production

Phys. Lett. B 843 (2023) 137745

- BSM effect in the Higgs potential could explain the matter-antimatter asymmetry of the universe.
 - BSM physics acting on the Higgs potential would enable EWK bubble nucleation.

$HH \rightarrow b\bar{b}\gamma\gamma$ analysis

Additional material

Figure 4: Reconstructed four-body mass for $m_X = 300$ GeV and $m_X = 500$ GeV resonant signal benchmarks and for the $\gamma\gamma$ +jets background. Dashed lines represent the distribution of $m_{b\bar{b}\gamma\gamma}$ while solid lines represent the distribution of $m^*_{b\bar{b}\gamma\gamma}$, defined in Section 4.2.1. Distributions are normalized to unit area.

Marco Valente

RIUMF, (

38

HH combined and separate likelihoods

0

Valente

00

Single-Higgs constraints to κ_{λ} and κ_{t}

• Combination with ttH also allow to constrain HH box-diagram effects via direct measurement of κ_t

Updated projections for HL-LHC

ATLAS-PHYS-PUB-2022-053

	Significance [σ]			Combined signal	
Uncertainty scenario	$bar{b}\gamma\gamma$	$bar{b} au^+ au^-$	bbbb	Combination	strength precision [%]
No syst. unc.	2.3	4.0	1.8	4.9	-21/+22
Baseline	2.2	2.8	0.99	3.4	-30/+33
Theoretical unc. halved	1.1	1.7	0.65	2.1	-47/+48
Run 2 syst. unc.	1.1	1.5	0.65	1.9	-53/+65

Uncertainty scenario	к _л 68% CI	<i>к</i> _λ 95% CI
No syst. unc.	[0.7, 1.4]	[0.3, 1.9]
Baseline	[0.5, 1.6]	[0.0, 2.5]
Theoretical unc. halved	[0.3, 2.2]	[-0.3, 5.5]
Run 2 syst. unc.	[0.1, 2.4]	[-0.6, 5.6]

41

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

-2Δln(L)

Updated projections for HL-LHC

ATLAS-PHYS-PUB-2022-053

Uncertainty scenario	<i>к</i> _λ 68% CI	<i>к</i> _λ 95% CI
No syst. unc.	[-0.3, 0.3]	[-0.5, 0.6]
Baseline	[-0.4, 0.4]	[-0.8, 0.9]
Theoretical unc. halved	[-0.6, 0.7]	[-1.1, 1.6]
Run 2 syst. unc.	[-0.7, 0.8]	[-1.4, 2.0]

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

Valente

Resonant interpretation

Resonant upper limits

- BSM models also predict possible heavy resonances decaying to HH
 - Re-optimised analyses to target these scenarios.
- Complementarity between channels allow to obtain optimal exclusion across m_{χ} .
- **No statistically significant excess** found: largest excess at lacksquare $m_{\chi} = 1.1$ TeV, with local (global) significance of 3.2σ (2.1 σ).

Physics department TRIUMF, Canada's particle accelerator Centre

Marco Valente

Combination p-value

Additional material (resonant)

Marco Valente Physics department TRIUMF, Canada's particle accelerato Centre

ATLAS

Combination acceptances vs κ_{λ}

Marco Valente Physics department TRIUMF, Canada's particle accelerato Centre

arxiv:2209.07510

collider	Indirect- h	hh	combined
HL-LHC [77]	100-200%	50%	50%
LC_{250}/C^3-250 [50, 51]	49%	_	49%
LC_{500}/C^3 -550 [50, 51]	38%	20%	20%
$CLIC_{380}$ [53]	50%	_	50%
$CLIC_{1500}$ [53]	49%	36%	29%
$CLIC_{3000}$ [53]	49%	9%	9%
FCC-ee 54	33%	—	33%
FCC-ee (4 IPs) [54]	24%	_	24%
FCC-hh [78]	-	3.4- $7.8%$	3.4-7.8%
$\mu(3 \text{ TeV})$ 63	-	15-30%	15 - 30%
$\mu(10 \text{ TeV})$ [63]	-	4%	4%

TABLE IX: Sensitivity at 68% probability on the Higgs cubic self-coupling at the various future colliders. Values for indirect extractions of the Higgs self-coupling from single Higgs determinations below the first line are taken from [2]. The values quoted here are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

