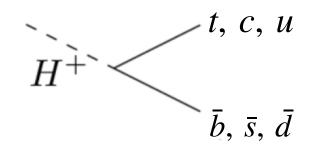
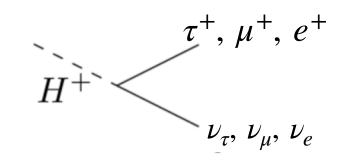
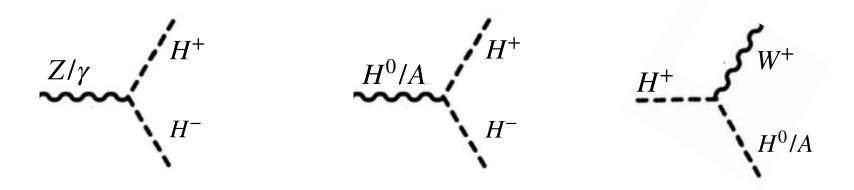
Charged Higgs Bosons in different Left-Right Models at the LHC

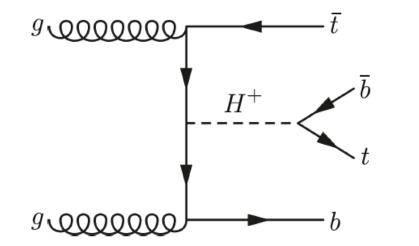

Poulose Poulose IIT Guwahati, India

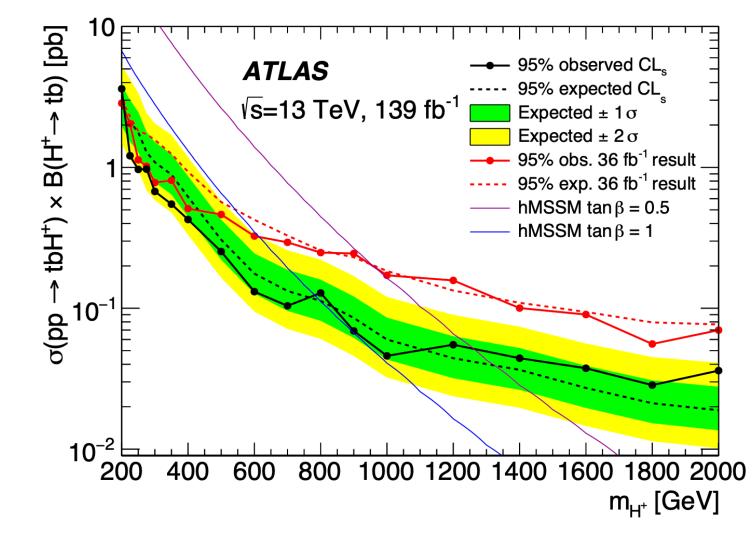

CAP Congress 2024, Western Univ., London, ON


Multi-Higgs Extensions:

MSSM, 2HDM, 3HDM, LRSM, Alternate Left-Right Models, Triplet-Higgs extensions, Singlet Charged Higgs extensions.

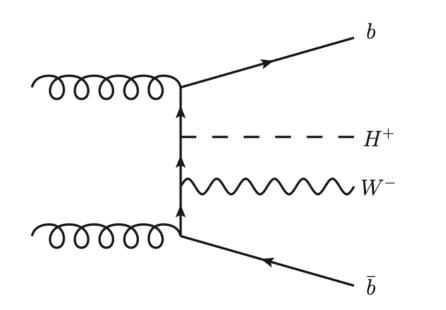
Non-singlet gauge multiplets necessarily have charged current interactions. This has become a strategy to search for such charged Higgs bosons at the colliders.

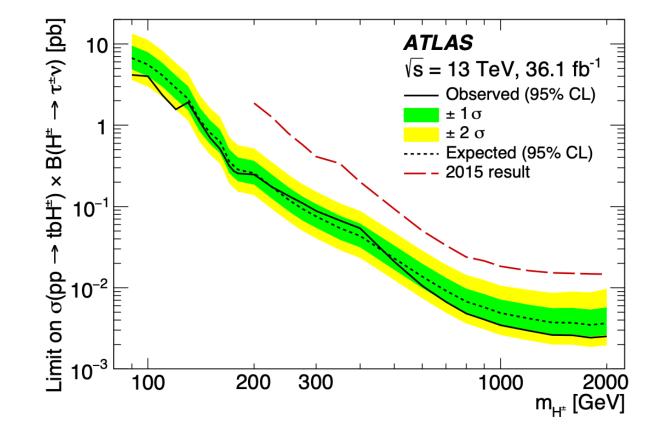




CAP Congress 2024, Western Univ., London, ON

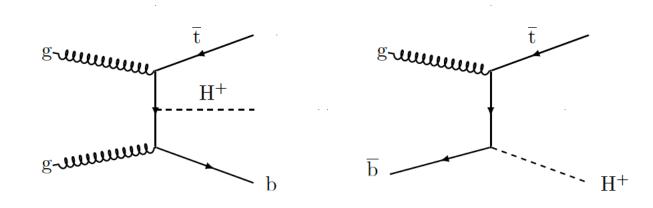
For $M_{H^+} > m_t$,


dominant decay channel is $H^+ \rightarrow t\bar{b}$

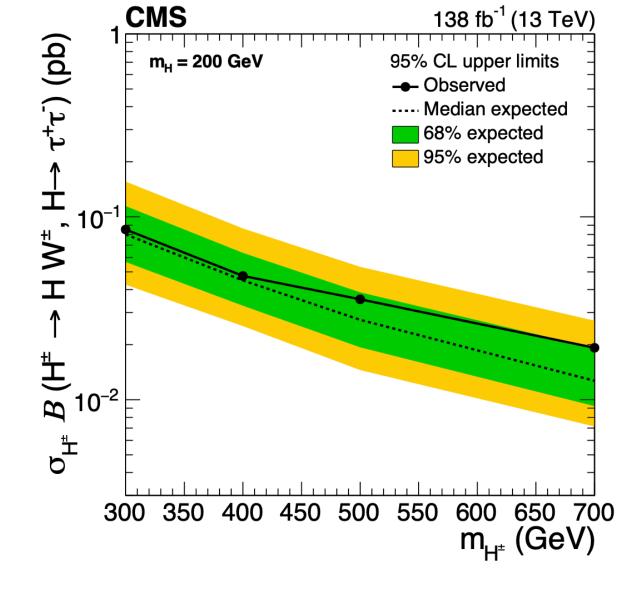


JHEP 06 (2021) 145

Another influential interaction for non-singlet gauge multiplets is the interaction with W^{\pm} and neutral Higgs boson.



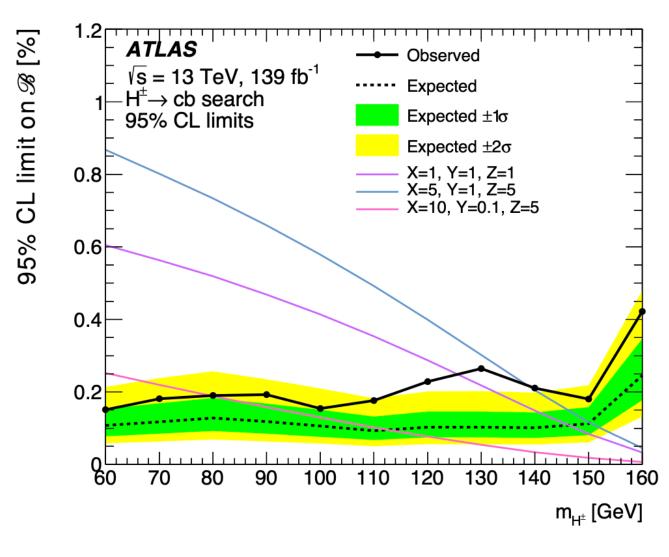
 $pp \rightarrow H^+W^- b\bar{b}$ $H^+ \rightarrow \tau^+ \nu_{\tau}$ Atlas: Jhep 09 (2018) 139


CAP Congress 2024, Western Univ., London, ON

Another influential interaction for non-singlet gauge multiplets is the interaction with W^{\pm} and neutral Higgs boson.

 $H^+ \to HW^+, \quad H \to \bar{\tau}\tau$

JHEP09(2023)032


CAP Congress 2024, Western Univ., London, ON

Lighter ones decay to lighter quarks

$$pp \rightarrow t\overline{t}$$

$$t \to H^+ b$$
$$t \to W^+ b$$

$$H^+ \to c\bar{b}$$
$$W^+ \to \ell^+ \nu$$

 $\mathscr{B} = BR(t \to H^+ b) \ BR(H^+ \to c\bar{b})$

JHEP09(2023)004

CAP Congress 2024, Western Univ., London, ON

Left-Right Symmetric Models

SM is chiral, the left-handed and right-handed particles differ in their fundamental interaction. Parity is violated maximally.

Left-Right Symmetric models are attempts to understand the origin of the parity violation. We can start with a Left-Right symmetric model at higher energies:

$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)$

CAP Congress 2024, Western Univ., London, ON

Left-Right Symmetric Models

SM is chiral, the left-handed and right-handed particles differ in their fundamental interaction. Parity is violated maximally.

Left-Right Symmetric models are attempts to understand the origin of the parity violation. We can start with a Left-Right symmetric model at higher energies:

$$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)$$

This is broken to the SM gauge symmetry

 $U(1)_Y$

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$

CAP Congress 2024, Western Univ., London, ON

The Standard LRSM

Needs additional scalar to break the LR symmetry.

Leads to charged Higgs

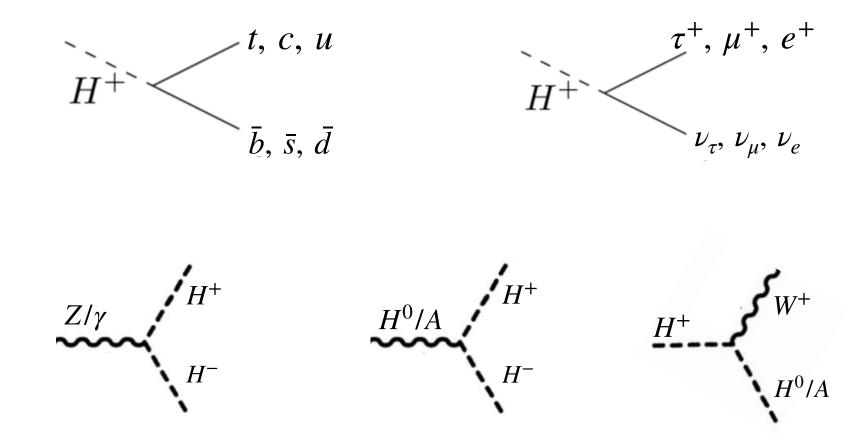

	Particles	$SU(3)_C$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$
Quarks	$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	3	2	1	$\frac{1}{3}$
	$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$ $Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix}$	3	1	2	$\frac{1}{3}$
Leptons	$L_L = \begin{pmatrix} u_L \\ e_L \end{pmatrix}$	1	2	1	-1
	$L_R = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix}$	1	1	2	-1
Scalars	$\Phi = \begin{pmatrix} \phi_1^0 & \phi_1^+ \\ \phi_2^- & \phi_2^0 \end{pmatrix}$	1	2	2^*	0
	$\Delta_L = \begin{pmatrix} \frac{\delta_L^+}{\sqrt{2}} & \delta_L^{++} \\ \delta_L^0 & -\frac{\delta_L^+}{\sqrt{2}} \end{pmatrix}$	1	3	1	2
	$\Delta_R = \begin{pmatrix} \frac{\delta_R^+}{\sqrt{2}} & \delta_R^{++} \\ \delta_R^0 & -\frac{\delta_R^+}{\sqrt{2}} \end{pmatrix}$	1	1	3	2

TABLE I: The particle content of LRSM.

CAP Congress 2024, Western Univ., London

LRSM charged Higgs

The LHC search results are applicable

CAP Congress 2024, Western Univ., London, ON

Another version of Left-Right Symmetric model

CAP Congress 2024, Western Univ., London, ON

LRSM				Singlet	Alternate LR Model							
						Particles	$SU(3)_C$	$SU(2)_L$	$SU(2)'_R$	$U(1)_{B-L}$	S	
	Particles	$SU(3)_C$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$	uarks	$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	3	2	1	$\frac{1}{6}$	0
Quarks	$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	3	2	1	$\frac{1}{3}$		$Q_L = \begin{pmatrix} d_L \end{pmatrix}$ $Q_R = \begin{pmatrix} u_R \\ d'_R \end{pmatrix}$	3	1	2	$\frac{1}{6}$	$-\frac{1}{2}$
	$Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix}$	3	1	2	$\frac{1}{3}$		d'_L	3	1	1	$-\frac{1}{3}$	-1
Leptons	$L_I = \begin{pmatrix} \nu_L \end{pmatrix}$	1	2	1	-1			3	1	1	$-\frac{1}{3}$	0
	$L_{R} = \begin{pmatrix} \nu_{R} \\ e_{R} \end{pmatrix}$	1	1	2	-1	Leptons	$L_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	1	2	1	$-\frac{1}{2}$	1
Scalars	$\Phi = \begin{pmatrix} \phi_1^0 & \phi_1^+ \\ \phi_2^- & \phi_2^0 \end{pmatrix}$	1	2	2*	0		$L_R = \left(e_R \right)$	1	1	2 1	$-\frac{1}{2}$ 0	$\frac{3}{2}$
	$\begin{pmatrix} \frac{\delta_L^+}{\sqrt{2}} & \delta_L^{++} \end{pmatrix}$	1	3	1	2		n_L $ u_R$	1	1	1	0	1
	$\Delta_L = \begin{pmatrix} \sqrt{2} & -\frac{1}{\sqrt{2}} \\ \delta_L^0 & -\frac{\delta_L^+}{\sqrt{2}} \end{pmatrix}$	1 0		2	Scalars	$\Phi = \begin{pmatrix} \phi_1^0 & \phi_1^+ \\ \phi_2^- & \phi_2^0 \end{pmatrix}$	1	2	2*	0	$-\frac{1}{2}$	
	$\Delta_R = egin{pmatrix} rac{\delta_R^+}{\sqrt{2}} & \delta_R^{++} \ \delta_R^0 & -rac{\delta_R^+}{\sqrt{2}} \end{pmatrix}$	1	1	3	2		$\chi_L = \begin{pmatrix} \chi_L^+ \\ \chi_L^0 \\ \chi_L^0 \end{pmatrix}$	1	2	1	$\frac{1}{2}$	0
$ \langle R \sqrt{2} \rangle $							$\chi_R = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \end{pmatrix}$	1	1	2	$\frac{1}{2}$	$\frac{1}{2}$

TABLE I: The particle content of LRSM.

TABLE I: The particle content of ALRM.

E. Ma, Phys. Rev. D36, 274 (1987).

CAP Congress 2024, Western Univ., London, ON

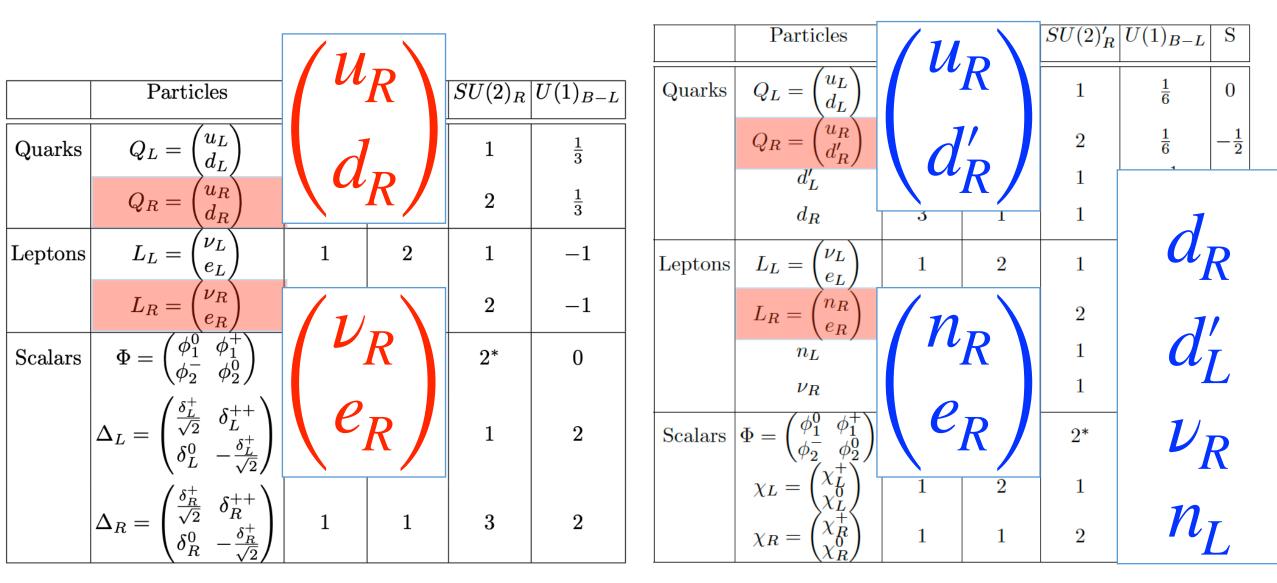
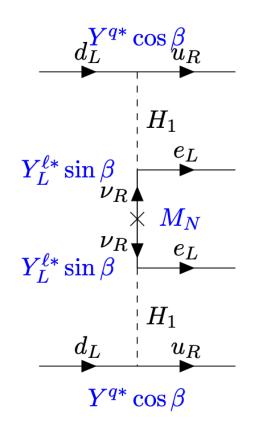


TABLE I: The particle content of LRSM.

TABLE I: The particle content of ALRM.

CAP Congress 2024, Western Univ., London, ON

 u_R is a Majorana neutrino, as against being part of the couple in the standard LRSM


=> Possibility of Leptogenesis

 ν_R along with presence of light (~100 GeV) H^+ can impact the $0\nu\beta\beta$ processes *Phys.Rev.D* 102 (2020) 7, 075020 arXiv: 2008.12270

 $n \mid H_1^0$: The lightest is a dark matter candidate. JHEP 12, 032, arXiv:2211.04286

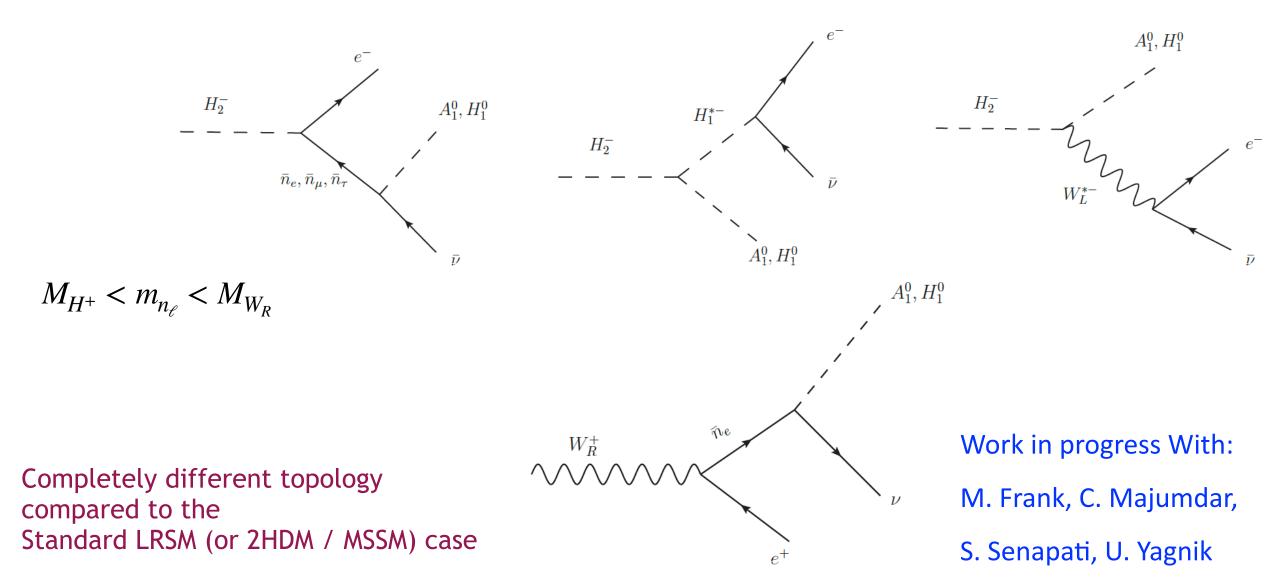
ν_R along with presence of light (~100 GeV) H^+ can impact the $0\nu\beta\beta$ processes

Phys.Rev.D 102 (2020) 7, 075020 arXiv: 2008.12270

$$\begin{split} -\mathcal{L}_{\mathrm{Y}} &= \bar{Q}_L Y^q \tilde{\Phi} Q_R + \bar{Q}_L Y^q_L \chi_L d_R + \bar{Q}_R Y^q_R \chi_R d'_L + \bar{L}_L Y^\ell \Phi L_R \cdot \\ &+ \bar{L}_L Y^\ell_L \tilde{\chi}_L \nu_R + \bar{L}_R Y^\ell_R \tilde{\chi}_R n_L + \mathrm{h.c.} \end{split}$$

For details of the model:

M. Frank, C. Majumdar, P. Poulose, S. Senapati, and U. A. Yajnik


JHEP 03, 065, arXiv:2111.08582 [hep-ph] JHEP 12, 032, arXiv:2211.04286 [hep-ph] *Phys.Rev.D* 102 (2020) 7, 075020 arXiv: 2008.12270

Non-standard decays, which are not searched for at the LHC

Our study: Search for such an H^+ at the LHC and future colliders

 $pp \rightarrow H^+H^-, W_R W_R, W_R H^\pm$

An example:

$$pp \rightarrow H^+H^-, W_R W_R, W_R H^\pm$$

Detailed detector level analyses is being done.

Search strategy of H^+ at the LHC presume their standard charged current interaction.

Considering a well motivated alternate Left-Right Model, H^+ can have non-standard charged current interactions involving exotic fermions (quarks and neutral leptons).

Collider direct searches of H^+ should include such possibilities.

Indirect constraints coming from flavour sector can also be different compared to the standard LRSM.