Strangeness production with the ATLAS detector

Erny Au Yang McGill University

CAP 2024 - London, ON

Outline

- Motivation
- The ATLAS detector
- Analysis strategy
 - V⁰ reconstruction
 - Selections
- Results
 - Mass distributions
 - Kinematic distributions
 - $\overline{\Lambda}/\Lambda$ ratio
 - Reconstruction efficiencies
- Outlook

Motivation

- Production of strange hadrons is crucial to understanding QCD at low momentum transfer
- Mass of strange quark ~ $\Lambda_{\rm QCD}$, hence strangeness production cannot be effectively modelled by perturbative techniques
 - Requires experiment data to help improve Monte Carlo (MC) parameters

Motivation

- Production of strange hadrons is crucial to understanding QCD at low momentum transfer
- Mass of strange quark ~ $\Lambda_{\rm QCD}$, hence strangeness production cannot be effectively modelled by perturbative techniques
 - Requires experiment data to help improve Monte Carlo (MC) parameters
- Potential to constrain the strangeness content of proton parton distribution functions (PDFs) by comparing data and MC simulations
- Strangeness production also previously studied at LHC at lower energies and other experiments (Tevatron, HERA, ...)

The ATLAS Detector

- A general-purpose detector at the LHC with almost full solid angle coverage
- Inner detector with charged particle tracking capabilities, with coverage $|\eta|<2.5$
- Electromagnetic and hadronic calorimeters, and muon spectrometer
 - *Measurements by these components not used in this analysis*

(source)

The ATLAS Detector

- A general-purpose detector at the LHC with almost full solid angle coverage
- Inner detector with charged particle tracking capabilities, with coverage $|\eta|<2.5$
- Electromagnetic and hadronic calorimeters, and muon spectrometer
 - *Measurements by these components not used in this analysis*
- Kinematic variables used:
 - p_T : momentum in the transverse plane
 - $\eta = -\ln \tan(\theta/2)$, where θ is the polar angle
 - ϕ : azimuthal angle around the beamline (z-axis)

CAP 2024

V^0 reconstruction

- In this analysis, reconstructing K_s^0 and $\Lambda(\overline{\Lambda})$ via their dominant decay channels:
 - $K_s^0 \to \pi^+ \pi^-$ (\$\approx 69\%)
 - $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}\pi^+$ ($\approx 64\%$)
- The V⁰ finder tool combines all possible pairs of oppositely charged tracks in the inner detector and forms V⁰ candidates
- Each V^0 candidate is assigned K_s^0 , $\Lambda \otimes \overline{\Lambda}$ reconstructed mass values by assuming the identity of the charged track particles to calculate the invariant mass

7

$\Lambda(\overline{\Lambda})$ invariant mass

Selections

- Using ATLAS data at $\sqrt{s} = 13 \text{ TeV}$
- V^0 candidate must be fitted with 2 tracks with $p_T > 100 \text{ MeV}$
- Further selections on kinematic variables:
 - θ : angle between reconstructed momentum and line connecting the V^0 vertex and PV
 - R_{xy} : flight distance in the transverse plane, ~ lifetime
 - *p*_{*T*}
 - Reconstructed K_s^0 / Λ masses

	K_s^0	$\Lambda\left(\overline{\Lambda} ight)$
cosθ	> 0.9990	> 0.9998
R_{xy} (mm)	4 - 450	17 - 450
p_T (MeV)	> 300	> 500
K _s ⁰ mass (MeV)		340 - 480 or > 520
Λ mass (MeV)	< 1105 or > 1125	

Strangeness production with ATLAS - Erny Au Yang

Selections

- Using ATLAS data at $\sqrt{s} = 13 \text{ TeV}$
- V^0 candidate must be fitted with 2 tracks with $p_T > 100 \text{ MeV}$
- Further selections on kinematic variables:
 - θ : angle between reconstructed momentum and line connecting the V^0 vertex and PV
 - R_{xy} : flight distance in the transverse plane, ~ lifetime
 - *p*_T
 - Reconstructed K_s^0 / Λ masses

	K_s^0	$\Lambda\left(\overline{\Lambda} ight)$
cosθ	> 0.9990	> 0.9998
R_{xy} (mm)	4 - 450	17 - 450
p_T (MeV)	> 300	> 500
K _s ⁰ mass (MeV)		340 - 480 or > 520
Λ mass (MeV)	< 1105 or > 1125	

Strangeness production with ATLAS - Erny Au Yang

Selections

- Using ATLAS data at $\sqrt{s} = 13 \text{ TeV}$
- V^0 candidate must be fitted with 2 tracks with $p_T > 100 \text{ MeV}$
- Further selections on kinematic variables:
 - θ : angle between reconstructed momentum and line connecting the V^0 vertex and PV
 - R_{xy} : flight distance in the transverse plane, ~ lifetime
 - *p*_{*T*}
 - Reconstructed K_s^0 / Λ masses

	K_{S}^{0}	$\Lambda\left(\overline{\Lambda} ight)$
cosθ	> 0.9990	> 0.9998
R_{xy} (mm)	4 - 450	17 - 450
p_T (MeV)	> 300	> 500
K _s ⁰ mass (MeV)		340 - 480 or > 520
Λ mass (MeV)	< 1105 or > 1125	

Mass distributions

- Same selections applied to both data and MC
- MC normalized to data within the signal region:
 - K_s^0 : $|\mathbf{m}_{K_s^0,V^0} \mathbf{m}_{K_s^0,\text{PDG}}| < 20 \text{ MeV}$
 - $\Lambda(\overline{\Lambda})$: $|m_{\Lambda,V^0} m_{\Lambda,PDG}| < 7 \text{ MeV}$

Kinematic distributions

• p_T , η and ϕ distributions of K_s^0 / Λ candidates passing selections and in signal regions (MC normalized to data)

$\overline{\Lambda}/\Lambda$ ratio

- Production ratio between $\overline{\Lambda}$ and Λ versus p_T , η and ϕ
- Both data and MC agree in general $\overline{\Lambda}/\Lambda < 1$

Reconstruction efficiencies

• MC efficiency obtained by comparing number of reconstructed candidates passing all selections and number of truth-level generated particles

Outlook

- Production cross-sections are being calculated using reconstruction efficiencies
- Looking into multiplicity distributions per event as another test of MC models
- Comparisons with results from previous experiments
- Comparisons with different MC models may help constrain proton PDFs and parameters
- Expanding analysis to other strange particles, e.g. Ξ⁻ (dss), may give better sensitivity to proton strangeness content despite a lower yield

Thank you!

Backup

Fit functions to mass distributions

Inner Detector

<u>source</u>)