

Recent highlights from Belle II

Raynette van Tonder

raynette.vantonder@mcgill.ca

2024 CAP Congress Western University, London, ON 28 May 2024

Outline for today

II. Highlights of recent Belle II physics results

Outline for today

II. Highlights of recent Belle II physics results

Belle II & Canadian Participation

 The Belle II Collaboration consists of 1158 researchers from 124 institutes in 28 countries!

- Seven Canadian institutes:
 - 15 grant eligible, 1 computing physicist, 4 postdocs, 12 graduate students, and 8 undergraduates.

U. British Columbia:

- C. Hearty, J. McKenna, M. De Nuccio, R. Leboucher,
- M. Wakai, D. Crook, V. Sharma, K. Wang

U. Victoria:

- M. Roney, R. Sobie, R. Kowalewski, T. Junginger, M. Ebert,
- T. Grammatico, A. Beaubien, N. Tessema,
- S. Gholipourverki, S. Taylor, Y. Peng

McGill:

A. Warburton, R. van Tonder, A. Fodor, T. Shillington, K. Chu

U. Manitoba:

- S. Longo, J. Mammei, W. Deconinck, M. Gericke, I. Na,
- B. Blaikie, S. Saha, A. Tseragotin, A. Shakib, K. Reimer

U. Alberta:

S. Robertson

St. Francis Xavier: H. Ahmed, E. Hunt, M. Penner

TRIUMF: R. Baartman, T. Planche

Goal: Achieve instantaneous luminosity of $\mathscr{L}_{Belle II} = 6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ \checkmark x^{30!}

with record $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ already achieved!

Belle II Detector

 Operates as magnetic spectrometer with high detection efficiency for charged and neutral particles.

Electromagnetic calorimeter

Csl(Tl) crystals, waveform sampling to measure time, energy, and pulse-shape.

Vertex detectors (VXD):

2 layer DEPFET pixel detectors (PXD)

4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):

 $He(50\%):C_2H_6$ (50%), small cells, fast electronics

Re-utilized from Belle:

Only the structure, superconducting magnets, calorimeter crystals and KLM RPCs

K_L and muon detector (KLM):

Resistive Plate Counters (RPC) (outer barrel) Scintillator + WLSF + MPPC (endcaps, inner barrel)

> Magnet: 1.5 T superconducting

> > Trigger: ## Hardware: < 30 kHz Software: < 10 kHz

Particle Identification (PID):

Time-Of-Propagation counter (TOP) (barrel)

Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD)

• An ideal laboratory to study rare decays or decays with missing energy

8

• An ideal laboratory to study rare decays or decays with missing energy

Collide electrons and positrons at a **centre of mass energy** of about twice the B meson mass:

 $\sqrt{s} = 10.58 \text{ GeV}$

• An ideal laboratory to study rare decays or decays with missing energy

• An ideal laboratory to study rare decays or decays with missing energy

• An ideal laboratory to study rare decays or decays with missing energy

Luminosity status

- Belle II has recorded a total integrated luminosity of 428 fb⁻¹ since March 2019
 - Compared to previous B-Factories: Belle 988 fb⁻¹ & BaBar 513 fb⁻¹
- Current status: Run 2 started on 20 February 2024 after a long shutdown period to install twolayer pixel detector and machine maintenance.

Physics program

15

Snowmass White Paper

Image credit: T. Browder

Outline for today

II. Highlights of recent Belle II physics results

Reconstruction at B-Factories

Inclusive/Untagged

Only reconstruct the signal B meson (B_{sig}).

Hadronic tagged

Reconstruct B_{tag} with (many) hadronic decay modes.

Efficiency, backgrounds

Purity, available observables

Image credit: K. Kojima

Evidence for $B^+ \to K^+ \nu \bar{\nu}$

- Very sensitive to beyond-Standard Model enhancements and complementary to $b \rightarrow s\ell^+\ell^-$.
- Experimentally challenging due to multiple missing particles on the signal side —only accessible at e⁺e⁻ colliders!
- Two independent analyses, utilizing **inclusive and hadronic tagging** approaches, run in parallel.
- Both approaches exploit distinctive topological features with BDTs to select events and suppress backgrounds

- Signal extraction strategies,
 - Inclusive approach: Fit to signal classifier ${
 m BDT}_2$ in bins of dineutrino mass-squared (q^2_{rec})
 - Tagged approach: Fit to signal classifier $\eta({\rm BDTh})$

arXiv:2311.14647

Evidence for $B^+ \to K^+ \nu \bar{\nu}$

arXiv:2311.14647

Combined results:

Signal strength: $\mu = 4.6 \pm 1.0 (\mathrm{stat}) \pm 0.9 (\mathrm{syst})$

Branching ratio: $BR(B^+ \to K^+ \nu \bar{\nu}) = [2.4 \pm 0.5 (\text{stat})^{0.5}_{-0.4} (\text{syst})] \times 10^{-5}$

First evidence of $B^+ \to K^+ \nu \bar{\nu}$ (3.5 σ) with BR in excess of SM by 2.7 σ

arXiv:2401.02840

20

- Consider three signal modes: $D^{*+} \rightarrow D^0 \pi^+$ and $D^+ \pi^-$, $D^{*0} \rightarrow D^0 \pi^0$
- Identify lepton from $\tau \to \ell \nu \bar{\nu}$
- Completeness constraint require **no additional tracks** or π^0 candidates.
- Main challenge: understand significant & poorly known $B \rightarrow D^{**} \ell \nu$ background decays.
 - Data-driven validation of background and signal modelling based on studies of sideband regions.
- Extract signal with 2D fit to residual energy in the calorimeter E_{ECL} & mass of undetected neutrinos $M_{miss}^2 = (p_{e^+e^-} p_{B_{tag}} p_{D^*} p_\ell)^2$

arXiv:2401.02840

- Consider three signal modes: $D^{*+} \rightarrow D^0 \pi^+$ and $D^+ \pi^-$, $D^{*0} \rightarrow D^0 \pi^0$
- Identify lepton from $\tau \to \ell \nu \bar{\nu}$
- Completeness constraint require **no additional tracks** or π^0 candidates.
- Main challenge: understand significant & poorly known $B \rightarrow D^{**} \ell \nu$ background decays.
 - Data-driven validation of background and signal modelling based on studies of sideband regions.
- Extract signal with 2D fit to residual energy in the calorimeter E_{ECL} & mass of undetected neutrinos $M_{miss}^2 = (p_{e^+e^-} - p_{B_{tag}} - p_{D^*} - p_{\ell})^2$

arXiv:2401.02840

- Consider three signal modes: $D^{*+} \rightarrow D^0 \pi^+$ and $D^+ \pi^-$, $D^{*0} \rightarrow D^0 \pi^0$
- Identify lepton from $\tau \to \ell \nu \bar{\nu}$
- Completeness constraint require **no additional tracks** or π^0 candidates.
- Main challenge: understand significant & poorly known $B \rightarrow D^{**} \ell \nu$ background decays.
 - Data-driven validation of background and signal modelling based on studies of sideband regions.
- Extract signal with 2D fit to residual energy in the calorimeter E_{ECL} & mass of undetected neutrinos $M_{miss}^2 = (p_{e^+e^-} - p_{B_{tag}} - p_{D^*} - p_{\ell})^2$

Leading systematics: MC statistics, E_{ECL} PDF shape, D^{**} modelling

$$R(D^*) = 0.262^{+0.041}_{-0.039} (\text{stat.})^{+0.035}_{-0.032} (\text{syst.})$$

SM prediction: $R(D^*) = 0.254 \pm 0.005$ HFLAV 23: $R(D^*) = 0.284 \pm 0.013$ Eur. Phys. J. C 81, 226 (2021)

Consistent with SM and previous measurements!

arXiv:2401.02840

Ω_c^0 lifetime measurement

Belle II confirms the LHCb results...

• Leading systematics: background modelling

Charm hadron lifetimes

- Absolute lifetime measurements of charm hadrons at Belle II thus far:
 - Improved knowledge of D lifetimes after ~20 years
 - World's most precise measurements of D^0 , D^+ and Λ_c^+ lifetimes
 - Independent confirmation of LHCb's result indicating that Ω_c^0 is not the shortest-lived weakly decaying charm baryon
- Results limited by statistics expected to improve with larger samples and additional decay modes
- Tiny systematic uncertainties (e.g., sub-% for D^0) establish **excellent detector performance**
- Paves the way for future lifetime measurements...

Search for $\tau^+ \to \ell^+ \alpha$ (α = invisible boson)

Most stringent constraint on the BR to date!

Outline for today

Belle II high-level trigger Bhabha reduction

- In most cases, the outcome of electron-positron collisions at SuperKEKB is not particularly interesting; mainly Bhabha e⁺e⁻ → e⁺e⁻(γ) events.
- Implement new machine learning requirement to reduce high-level trigger Bhabha efficiency

Dark photon search

- Dark photon is a spin-1 gauge boson that would mediate the dark EM force.
- Interacts through kinetic mixing with Standard Model photon.
- If dark photon is allowed kinematically to decay to dark matter, detector signature is a single high energy photon.
- Belle II will explore parameter space consistent with observed relic DM abundance.

Dark photon search

- Major analysis background: $e^+e^- \rightarrow \gamma\gamma(\gamma)$, with all but one out of acceptance or missed.
- Use $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events to study Belle II sub-detector photon efficiency in data and simulation.
 - Estimate the momentum of the photon from the di-muon system. Search for a corresponding ECL or KLM cluster.
 - If either sub-detector sees a signal, the photon is detected.

Daniel Crook

- Strongly interacting dark sector coupled to Standard Model through a dark photon mediator.
- Dark quarks form bound states: dark pseudoscalars π_d^0 , π_d^{\pm} and vector mesons ρ_d^0 , ρ_d^{\pm}
- Dark pions are stable and are the dark matter candidates.
- ρ_d^0 decays to the SM particles via a virtual dark photon.
 - Detector signature is displaced vertex with two charged tracks.

JHEP 12 (2022) 005 E. Bernreuther et al. Forecasting dark showers at Belle II

Image credit: Patrick Ecker

Dark shower search

- For low mass ρ_d^0 , currently implementing machine learning (XGBoost library) to reduce background from photon conversion events.
- Currently achieving 96.1% accuracy.

- Analysis goal: measure the branching fraction of $B \to X_u \ell \nu$ decays via an **inclusive** analysis approach
 - only the outgoing lepton is selected.

 \bullet

Andrea Fodor

• Looking in the endpoint region of the lepton momentum ($p_{\ell}^* > 2.0$ GeV) in the CM frame to avoid the dominant background from $B \to X_c \ell \nu$ decays.

Forward-backward asymmetry in incl. $B \rightarrow X \ell \nu$

Raynette van Tonder

Conclusion

- Belle II offers a unique and fertile environment for flavour physics.
- Multiple **world-leading results** published since arrival of first data.
 - Only presented a subset of results.
- Luminosity and physics output will continue to grow —especially with the the start of a new data taking period!

Many opportunities for new personnel interested in joining!

