

Canadian Association of Physicists

Association canadienne des physiciens et physiciennes

Measurement of associated production of Higgs bosons decaying to pairs of *W* bosons with the ATLAS detector at the Large Hadron Collider

Canadian Association of Physicists Congress, May 26-31, 2024 **Matthew Basso** (TRIUMF/SFU), On behalf of the ATLAS Collaboration

Associated production of Higgs bosons in the WW* decay channel

- Production of Higgs bosons in association with a vector boson (*VH*): 3rd largest production mode (2.4 pb) at the Large Hadron Collider (LHC)
- Higgs decays to WW^* ($H \rightarrow WW^*$): 2nd largest branching fraction (22%)
- VH(→WW*): provides direct access Higgs-vector couplings at both production and decay vertices, measurements of which provide stringent tests of the Standard Model (SM)
 - *VH* production (<u>1808.08238</u>) and $H \rightarrow WW^*$ decays (<u>1412.2641</u>) have been independently observed by ATLAS \rightarrow **observation of VH**($\rightarrow WW^*$) **expected**
 - Deviations from this expectation could indicate Beyond the SM (BSM) physics (extended Higgs sectors, additional heavy vector bosons, ...)

Tree-level diagrams of $VH(\rightarrow WW^*)$ topologies

3

Previous measurements by ATLAS

- Previous measurement conducted by the ATLAS experiment using 36.1 fb⁻¹ of LHC data at $\sqrt{s} = 13$ TeV
 - Considered 3- and 4-lepton final states
 - Measured inclusive VH production as well as resolved WH/ZH production
- Measured $VH(\rightarrow WW^*)$ with an observed significance of 4.1 σ over the background-only hypothesis
 - Precision limited by availability of data

Measured *WH/ZH* cross sections times the $H \rightarrow WW^*$ branching fraction (source: <u>1903.10052</u>)

Full LHC Run 2 measurement

- Full LHC Run 2 measurement: <u>ATLAS-CONF-2022-067</u>
 - 139 fb⁻¹ of integrated luminosity collected over 2015-18
 - Corresponding CMS measurement: <u>CMS-HIG-20-013</u>
- Considers the 2-, 3-, and 4-lepton final states shown earlier (slide 3)
 - All channels characterized by the presence of missing transverse momentum (MET) and collimated leptons from the Higgs decay
- Analysis benefits from the use of machine learning in all channels by:
 - <u>Multivariate (MVA) discriminants</u>: MVAs of different architectures are trained to separate signal from background(s) (input variables in the <u>Backup</u>)
 - <u>Neural-network-based lepton isolation</u>: significantly reduces sources of misidentified leptons (from light/heavy-flavour decays or $\gamma \rightarrow e^+e^-$)

The ATLAS detector

- General purpose detector with cylindrical symmetry and near hermetic coverage
 - Tracking subsystem in 2 T magnetic field for charged particle reconstruction
 - Calorimeters for reconstruction of electrons/photons and hadrons
 - Muon spectrometer for reconstruction of muons
 - 2-stage trigger, reducing event rate to ~1 kHz

Labelled diagram of the ATLAS detector (source: <u>https://cds.cern.ch/record/1095924</u>)

Strategy: 2-lepton channels

- Different-flavour, opposite-sign (DFOS) channel: requires 2 DFOS leptons and ≥2 jets
 - Artificial neural network (ANN) separating
 VH from Higgs/non-Higgs backgrounds
 - Dedicated <u>control regions</u> normalizing top quark, *WW*, and *Z*+jets backgrounds
- Same-sign (SS) channel: requires 2 SS leptons and ≥1 jets
 - Subdivided further according to lepton flavour: µµ, ee, and eµ/µe
 - Recurrent neural network (RNN) separating WH and WZ production

Strategy: 3-lepton channels

- Requires 3 leptons of total charge ±1, subdivided according to number of same-flavour, opposite-sign (SFOS) lepton pairs:
 - \geq 1 → "dominated" by *WZ* <
 - $\circ \quad \mathbf{0} \rightarrow \textbf{``depleted'' in WZ}$
- ANNs separating WH from WZ, WWW, and/or top quark backgrounds
- Dedicated <u>control regions</u> normalizing the WZ background

(source: ATLAS-CONF-2022-067)

Strategy: 4-lepton channels

- Require 4 leptons of total charge 0, subdivided according to number of SFOS lepton pairs, 1 or 2
 - Only ZZ with $Z \rightarrow \tau \tau$ enters 1-SFOS channel \rightarrow more pure in signal
- Boosted decision trees (BDTs) separating ZH and ZZ production
- Dedicated <u>control region</u> normalizing ZZ background

(source: ATLAS-CONF-2022-067)

Results: cross sections

Measured cross sections times the $H \rightarrow WW^*$ branching ratio relative to their expected values as well as their total uncertainties (source: <u>ATLAS-CONF-2022-067</u>)

- MVA distributions for each channel enter the statistical analysis, where the signal cross section is fitted
- Measured both inclusive (VH) and resolved (WH/ZH) cross sections
 - Good consistency with the SM expectations
 - And high precision on the measured cross section: 26%
- 4.6σ significance over the background-only hypothesis!

Results: uncertainties

- Uncertainty dominated by
 availability of data
 - Will benefit from a combination with Run 3 data
- Other leading sources of systematic uncertainties:
 - <u>ZH cross section</u>: muon isolation efficiency and missing higher-order corrections to the SM cross section
 - <u>WH cross section</u>: data-driven background estimation, WWW modelling, and WZ modelling

Source	$\frac{\Delta(\sigma_{VH} \times \mathcal{B}_{H \to WW^*})}{\sigma_{VH} \times \mathcal{B}_{H \to WW^*}} \ [\%]$	$\frac{\Delta(\sigma_{WH} \times \mathcal{B}_{H \to WW^*})}{\sigma_{WH} \times \mathcal{B}_{H \to WW^*}} \ [\%]$	$\frac{\Delta(\sigma_{ZH} \times \mathcal{B}_{H \to WW^*})}{\sigma_{ZH} \times \mathcal{B}_{H \to WW^*}} \ [\%]$
Statistical uncertainties in data	22.3	57.9	28.4
Systematic uncertainties	13.3	36.6	9.9
Statistical uncertainties in simulation	6.4	14.4	5.9
Experimental systematic uncertainties	5.2	9.8	6.0
Electrons	1.2	1.8	1.6
Muons	2.5	2.8	4.1
Jet energy scale	0.7	2.3	0.5
Jet energy resolution	0.6	2.8	0.6
Flavour tagging	0.9	1.4	0.8
Missing transverse momentum	0.6	0.4	0.9
Pile-up	1.1	1.5	0.8
Luminosity	2.3	2.4	2.1
Mis-identified leptons	2.9	7.1	2.7
Charge-flip electrons	1.5	4.5	0.1
Theoretical uncertainties	6.0	18.6	4.7
WH	2.3	2.8	0.1
ZH	0.7	0.7	3.4
WW	1.0	3.3	0.3
$W(Z/\gamma^*)$ 0-jet	3.2	11.3	0.3
$W(Z/\gamma^*) \ge 1$ -jets	0.2	0.8	0.4
$Z(Z/\gamma^*)$	0.8	1.5	0.6
VVV	2.4	12.7	0.3
Тор	2.9	5.5	2.5
Z+jets	1.8	3.4	1.5
RNN shape uncertainty for $W(Z/\gamma^*)$	8.8	27.3	0.3
Floating normalisations	0.1	0.2	0.1
Total	26.0	71.0	30.1

(source: ATLAS-CONF-2022-067)

Conclusion

- Presented the results of the measurement of VH production in the H→WW* decay channel using 139 fb⁻¹ of data measured by ATLAS
 - Results are consistent with the SM expectations
- $VH p_T^V$ spectrum sensitive to BSM effects \rightarrow will help constrain such effects at low p_T^V
 - Provides a cross-check of $H \rightarrow bb$, which best measures high p_T^V

VH cross sections measured in bins of p_T^{V} , excluding the $H \rightarrow WW^*$ measurement (source: <u>2207.00092</u>)

Thank you for listening! Questions? (While this is cool event display, it corresponds to a $Z \rightarrow \mu\mu$ event, which is a background in all channels!)

13

Backup

Input variables to MVA discriminants

2-lepton DFOS VH

Multiclassifier input variables				
$p_{\mathrm{T}}^{\ell_0}$	$p_{\mathrm{T}}^{\ell_1}$	$\Delta \phi_{\ell\ell}$	$\Delta Y_{\ell\ell}$	$m_{\ell\ell}$
$p_{ m T}^{j_0}$	$p_{\mathrm{T}}^{j_1}$	$\Delta \phi_{jj}$	ΔY_{jj}	m_{jj}
m_{T}	$m_{\tau\tau}$	$m_{\ell_0 j_0}$	$m_{\ell_0 j_1}$	$m_{\ell_1 j_0}$
$m_{\ell_1 j_1}$	H_{T}	$E_{\mathrm{T}}^{\mathrm{miss}}$	$\mathcal{S}_{ ext{miss}}$	

2-lepton SS WH

Object	p_{T}	η	φ
Lepton	p_{T}^{ℓ}	η^ℓ	ϕ^ℓ
Missing transverse momentum	$E_{\mathrm{T}}^{\mathrm{miss}}$	0	$\phi^{ m miss}$
Jet	p_{T}^{j}	η^j	ϕ^j

3-lepton *WH*: *Z*-dominated and *Z*-depleted

C	lassifier in	put variabl	es	Multic	lassifier i	nput vari	iables
$p_{\mathrm{T}}^{\ell_0}$	$\left \Sigma_{i=0}^2 \vec{p}_{\mathrm{T}}^{\ell_i}\right $	$\Delta\eta_{\ell_0\ell_1}$	$\Delta\eta_{\ell_1\ell_2}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$\Delta R_{\ell_0 \ell_1}$	$\Delta R_{\ell_0 \ell_2}$	$\Delta R_{\ell_1 \ell_2}$
$\Delta \phi_{\ell_0 \ell_2}$	$\Delta R_{\ell_0\ell_1}$	$\Delta R_{\ell_0\ell_2}$	$m_{\ell_0\ell_1}$	$\Delta\eta_{\ell_0\ell_1}$	$\Delta\eta_{\ell_0\ell_2}$	$\Delta\eta_{\ell_1\ell_2}$	$m_{\ell\ell\ell}$
$m_{\ell_0\ell_2}$	$m_{\ell_1\ell_2}$	$\Delta \phi_{\ell_0,\mathrm{miss}}$	$\Delta \phi_{\ell_1, ext{miss}}$	$p_{\mathrm{T}}^{\ell_0}$	$p_{\mathrm{T}}^{\ell_1}$	$p_{\mathrm{T}}^{\ell_2}$	$\left \sum_{i=0}^{2} \vec{p}_{\mathrm{T}}^{\ell_{i}}\right $
$\Delta \phi_{\ell_2,\mathrm{miss}}$	$E_{ m T}^{ m miss}$	m_{T}^W		$p_{\mathrm{T}}^{j_0}$	n _{jets}	n _{b-jets}	$\Delta \phi_{\ell_0,\mathrm{miss}}$
				$m_{\ell_0\ell_1}$	$m_{\ell_0\ell_2}$	$m_{\ell_1\ell_2}$	$\Delta \phi_{\ell_1,\mathrm{miss}}$
				$m_{\mathrm{T}}^{\ell_0\ell_1}$	$m_{\mathrm{T}}^{\ell_0\ell_2}$	$m_{\mathrm{T}}^{\ell_{1}\ell_{2}}$	$\Delta \phi_{\ell_2,\mathrm{miss}}$
				$\mathcal{S}_{ m miss}/E_{ m T}^{ m miss}$	F_{α}		

4-lepton ZH				
BDT input variables				
n _{jets}	$p_{\mathrm{T}}^{\ell_0}$	$p_{\mathrm{T}}^{\ell_1}$	$p_{\mathrm{T}}^{\ell_2}$	
$p_{\mathrm{T}}^{\ell_3}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$p_{\mathrm{T}}^{4\ell}$	$m_{\ell_2\ell_3}$	
$m_{\ell_0\ell_1}$	$m_{4\ell}$	$m_{\tau\tau}$	$\Delta \phi_{\ell_0 \ell_1, \mathrm{miss}}$	
$\Delta \phi^{\mathrm{boost}}_{\ell_0 \ell_1}$				

Control regions: 2-lepton DFOS VH

Control regions: 3-lepton WH binned in Z-dominated MVA score

Control regions: 3-lepton WH binned in Z-depleted MVA score

Control regions: 4-lepton ZH

Normalized via

Single-channel results and normalization factors / SS signal region

Channel	POI / Z_0	Expected	Observed
Opposite sign 2l	μ_{VH}	$1.00^{+1.02}_{-0.98}$	$1.94^{+1.07}_{-1.02}$
Opposite-sign 2t	Z_0	1.0	1.9
Same-sign 21	μ_{WH}	$1.00^{+0.61}_{-0.60}$	-0.08 ± 0.58
Sume sign 20	Z_0	1.6	0.0
31	μ_{WH}	$1.00^{+0.44}_{-0.40}$	$0.64^{+0.42}_{-0.37}$
St	Z_0	2.8	1.8
4ℓ	μ_{ZH}	$1.00^{+0.47}_{-0.39}$	$1.59^{+0.54}_{-0.47}$
	Z_0	3.1	4.5
Combined 1-POI	μ_{VH}	$1.00^{+0.27}_{-0.25}$	$0.92^{+0.25}_{-0.23}$
combined 1101	Z_0	4.7	4.6
	μ_{WH}	$1.00^{+0.35}_{-0.33}$	$0.45^{+0.32}_{-0.30}$
Combined 2-POI	μ_{ZH}	$1.00^{+0.47}_{-0.39}$	$1.64^{+0.55}_{-0.47}$
	Z_0^{WH}	3.3	1.5
	Z_0^{ZH}	3.1	4.6

Channel	Background	Normalisation factor
	Тор	$0.99^{+0.31}_{-0.22}$
Opposite-sign 2ℓ	Z+jets	$0.87^{+0.15}_{-0.14}$
	WW	$0.89^{+0.27}_{-0.24}$
Same-sign 2ℓ	$W(Z/\gamma^*)$	$0.91^{+0.18}_{-0.16}$
	$W(Z/\gamma^*)$ 0-jet	1.03 ± 0.06
3ℓ	$W(Z/\gamma^*) \ge 1$ -jets	$0.88^{+0.16}_{-0.15}$
	WWW	$2.18^{+0.73}_{-0.61}$
4ℓ	ZZ	$0.99^{+0.08}_{-0.07}$

Normalized via Z-depleted signal region, motivated by excess observed in *WWW* measurement (2201.13045)

2D likelihood contours for observed results

