Speaker
Description
Silicon photomultipliers (SiPMs) are single-photon sensitive light sensors. The excellent radio-purity and high gain of SiPMs along with a high VUV detection efficiency make them ideal for low-background photon counting applications, such as in neutrino-less double beta decay and dark matter experiments employing noble liquid targets. The Light only Liquid Xenon (LoLX) experiment is an R&D liquid xenon (LXe) detector located at McGill University. LoLX aims to perform detailed characterization of SiPM performance, and to characterize the light emission and transport from LXe to inform future detectors. During Phase-1 of operations, LoLX employed 96 Hamamatsu VUV4 SiPMs in a cylindrical geometry submerged in LXe. Photons detected by a SiPM trigger an avalanche process in the individual photodiodes within the SiPM. The avalanche produces near infra-red photons that are emitted and can transport across the detector to other SiPMs which may produce correlated pulses on other channels, a process known as SiPM external crosstalk (eXT). With the Phase-1 LoLX detector, we performed measurements of SiPM external crosstalk in LXe with similar geometric acceptance as future planned experiments. In this presentation, we will present the measurement of SiPM eXT detection within LoLX, with comparisons to GEANT4 eXT simulations informed by ex-situ measurements of SiPM photon emission characteristics.
Keyword-1 | SiPM external crosstalk |
---|---|
Keyword-2 | Liquid Xenon |
Keyword-3 | Neutrinoless double beta deca |