Measurement of SiPM External Crosstalk in a LXe Detector

David Gallacher PhD Candidate - Brunner Neutrino Lab McGill University 2024 CAP Congress - May 27th

LXe detectors & SiPMs

- Liquid Xenon (LXe) is a scintillating material that produces ultraviolet light from radiation interactions
- Silicon photomultipliers (SiPMs) are solid-state singlephoton counting sensors
- We use **SiPMs** to count photons from radiation in **LXe** to perform a proportional energy measurement

Fig: Hamamatsu VUV4 Packages in LoLX detector during CAP 2024 Congress - David Gallacher installation 2

L-ġ-LX

- Light only Liquid Xenon (LoLX) is a modular smallscale LXe experiment McGill University
- Two experimental phases to date:
 - Phase-1 This Talk
 - Phase-2 (<u>See Alex Li's Talk</u> [M2-1-3:00])
- Phase-1 Employed 96 Hamamatsu SiPMs in an octagonal prism geometry
 - Equipped with a ⁹⁰Sr beta source needle

Fig: Cross-section of LoLX Phase-1 Detector

- SiPMs are grouped in packages of 4
- 23/24 packages are covered by optical filters
 - 22x >220 nm longpass filters
 - 1x 175 nm bandpass filter
- Filters separate LXe scintillation from SiPM External Crosstalk

Fig: Overview of wavelength-dependent optical properties in LoLX

SiPM External Crosstalk

- During the SiPM detection process near-infrared (NIR) photons are produced
- These photons may escape the SiPM and be detected elsewhere
 - Known as SiPM External Crosstalk or ExCT
- This is a source of correlated avalanches (CA)
- Our goals:
 - Characterize SiPM ExCT in a LXe detector
 - Create a simulation model of ExCT to predict impact on future LXe detectors

5/27/24

CAP 2024 Congress - David Ga

Legend

What's the impact?

- Next generation rare event search experiments will use large quantities of SiPMs
 - Neutrino-less double beta decay (nEXO)
 - Dark Matter (ARGO/DS20K)
- Cylindrical geometries enhance ExCT impact
- Need to evaluate the impact of SiPM ExCT on energy resolution, threshold and position reconstruction

Fig: Rendering of nEXO TPC design, SiPM barrel faces inward with ~50k devices

Measuring SiPM ExCT with LoLX

- To measure SiPM ExCT we look at **time**
- Signature of ExCT is two pulses in time coincidence from two different channels
- We look **late** in the event window for **correlated delayed pulses**

Measuring SiPM ExCT with LoLX

- To measure SiPM ExCT we look at **time**
- Signature of ExCT is two pulses in time coincidence from two different channels
- We look late in the event window for correlated delayed pulses

How do we see ExCT?

- By collecting pairs of pulses in the low- occupancy region we build a distribution in Δt
 - Pairs are between unfiltered "source" and longpass filtered "targets"
- Excess at $\Delta t = 0$ over combinatorial background is attributed to SiPM ExCT
- Repeat for each run and voltage (4 + 5V OV)

Fig: Fit to summed delta-time distribution for all 5V data summed

ExCT simulation model

- Simulations of SiPM ExCT carried out using custom GEANT4 physics extensions
- Similar implementation to fluorescence in GEANT4
 - For each "detected" photon, we trigger ExCT process and produce photons to track through detector
- Photons are produced "at source" (Within Silicon) with a "Mean emission intensity"
 - ~97% of photons produced in Si do not escape the SiPM
 - Using input from TRIUMF measurements of ExCT and detailed SPAD simulations[†]
 - Randomly sample each photon property and determine if it escapes
- Distribution of escaping ExCT photons shown to the right

ExCT photons, normalized to proportion of emitted photons in the outgoing hemisphere (2 π)

What do we see?

- First sweep over simulated ExCT intensities
 - Mean # of Photons/Avalanche (#ph/av.)
- Compare the measured ExCT yield with simulation results
 - Interpolate simulation curve for #ph/av.
 produced at each voltage
- Determine #ph/av. emitted from simulations

What do we see?

PRELIMINARY

Overvoltage	ExCT Probability (%)	Emission within Si (γ /Av.)		Emission into LXe (γ /Av.)	
4 V	4.52 ± 0.12 (stat.) $^{+0.43}_{-0.56}$ (sys.)		$37.1_{-9.0}^{+7.9}$	$1.02\substack{+0.22\\-0.25}$	
5 V	7.21 ± 0.19 (stat.) $^{+0.69}_{-0.89}$ (sys.)		$60.4^{+12.7}_{-15.1}$	$1.66^{+0.35}_{-0.42}$	

- Probabilities are for detecting ExCT from any unfiltered to any longpass filtered channel in LoLX
- Emission reported as internal (before escaping) and external (transmitted into LXe)
- Systematic uncertainties dominate over statistical at ~10% from data and ~20% from simulations
- Ex-situ measurements reported values 39.2 +/- 9.3 ph/av. and 1.23 +/- 0.43 in LXe †

Outlook and next steps

- SiPM ExCT measured directly in a LXe detector
- Developed a GEANT4 simulation method for characterizing
- Good agreement between simulation and data with nominal inputs
- Measurement of ExCT emission intensity are within uncertainty of exsitu measurements[†]

- Manuscript for this work is nearing completion, keep an eye out soon!
- Building on the simulation method here, we will evaluate the impact of SiPM ExCT for nEXO
- Follow up measurements with faster timing and angular dependence planned in LoLX Phase-2

^{5/27/24} + K. Raymond et. al. 2024 (2402.09634)

Thank you for your attention from the LoLX Collaboration!

Questions?

Please reach out to get in touch!

Backup slides

Backup – Event and Pulse Selection Excerpts from paper draft (in Re preliminary)

For a given source channel, we search for ExCT source candidate pulses. These are identified as follows:

- Occurs within the search window, defined as the region of sufficiently low occupancy (chosen as <0.2 pulses in the window per waveform on average), see Figure 9 for reference.
- Candidate source pulses are SPE-like from charge-based estimation, to ensure approximately constant emission intensity amongst source pulses, SPE selection region is shown in Figure 6
- Candidate source pulses haves no additional subpeaks (no afterpulsing)

Excerpts from paper draft (in Review,

Data were taken with a >3 photon equivalent ADC threshold on any channel in the unfiltered SiPM quad. Events selected for analysis must pass a selection of data cleaning and analysis cuts:

- No channels may clip the digitizer or saturate the devices dynamic range (Removes muon-like events with much higher light output than source events)
- Stable pre-trigger baselines (Removes events with saturation or digitizer clipping in the preceding event)
- Only one trigger candidate per event (Removes accidental pile-up)
- Well-defined start time for the event (No significant pretrigger light from a pre-trigger pileup low-energy event)

Backup - SPE Selection

- Maximize our signal/background by using the Unfiltered SiPMs as the "Source" and 220 nm cutoff filtered channels as "Targets"
- To ensure nominal ExCT intensity, we select SPE pulses for source candidates
- SPE selection is done by gaussian fits to each channel with 90% acceptance region
- No after-pulsing permitted

Backup - Simulation Details

Backup - Systematic Budget

Systematic Name	Туре	Variation	Relative Uncertainty (%)
NIR SiPM PDE	Simulation	$\pm 10\%$ Relative	+7.9, -10.6
NIR LP Transmittance	Simulation	$\pm 10\%$ Relative	+1.3, -6.1
Cage Reflectivity	Simulation	-25% Absolute	± 17.2
SiPM OV Spread	Sim. + Data	5% Smear	Negligible
Pile-up Algorithm Threshold	Data	\pm 1 photon equivalent	+7.9, -13.1
DiCT Backwards Correlation Contribution	Sim. + Data	Estimate	± 1.6
Total Data Uncertainty Total Simulation Uncertainty			+9.3, -12.1 +19.0, -21.1

nEXO PD Meeting - April 10th

Backup

Backup- Simulation Details

- In our data measurements we measure "total correlation probability"
- This includes "Direct" correlation
 - Source->Target
- Also includes "Backwards" correlation
 - Target->Source
- For simulations, we measure both independently
- Source->Target
 - Enable ExCT Simulation ONLY for source
- Target->Source
 - Enable ExCT Simulation for all **EXCEPT** source
- Sum of two contributions is the "Total Correlation Probability"
- From simulations we see roughly ~16% contribution of backwards correlation to total
 - Stable across many simulation configurations, driven by solid-angles and transport efficiency + emission angular distribution

