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Background

● Detector simulation used almost 40% of 

the computing resources of the ATLAS 

experiment for LHC Run 2 analysis.

● Current techniques for Calorimeter shower 

simulation are computationally expensive

[1] P. Calafiura et al. ATLAS HL-LHC Computing Conceptual Design Report. Technical report, CERN, Geneva, Sep 2020 [2] AtlFast3, 
https://arxiv.org/abs/2109.02551
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● 100,000 GEANT4-simulated electron 

showers (1 GeV to 1 TeV)

● The geometry features a concentric cylinder 

structure with 45 layers

● Each layer has 144 readout cells, 9 in radial 

and 16 in angular direction, yielding a total 

of 9x16x45 = 6480 voxels

● Each event: {input_energy: 1x6480 tensor}

Dataset

The image shows a 3d view of a geometry 
with 3 layers, with each layer having 3 bins 
in radial and 6 bins in angular direction.

[1] https://calochallenge.github.io/homepage/
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Prior: Restricted Boltzmann Machine

● Energy Based Model
● More expressive than traditional Gaussian prior.
● Classically, we use Markov-chain to get samples.
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4-Partite RBM based on 
D-Wave’s Pegasus Topology



Move to QPU: Quantum Annealing
 

Quantum Annealing:
● Start with A(0) >>B(0)  end up with 

A(1) << B(1)
● start in quantum superposition state and 

end up in a classical state
● Fast! One anneal = 1 sample
● Independent samples each time!

is the magnetic field acting on spin l
is the interaction strength between spins l and m

is the spin variables, which can take values of +1 or -1

[1] https://docs.dwavesys.com/docs/latest/c_gs_2.html
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If we can build a mapping between RBM and Ising models, we 
can potentially use D-WAVE to do latent space sampling!



Results

Averaged Energy Images (GEANT Target) Averaged Energy Images (QPU-generated)
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Synthetic Images Generation Rates Comparison

Type GEANT4 A100 GPU Total QPU Access QPU Annealing

Time per sample ~1s ~2ms ~0.2ms ~0.02ms



Performance Evaluation
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Ongoing: Energy Conditioned Prior

● For better sampling quality
● Have finished the classical training stage
● Use strong MF to configure D-Wave states
● Currently slow, need to cooperate with D-Wave
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Summary
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● We have shown that it is possible to utilize the Quantum Processing Unit for 

generating Restricted Boltzmann Machine samples, which facilitate the 

generation of particle showers.

● Quantum Processing Unit sampling is significantly faster than traditional Monte 

Carlo methods, maintaining high-quality shower image generation.

● Energy conditioned prior turns out to perform better, but more work needs to be 

done on the D-Wave end.
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Backup
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Restricted Boltzmann Machine: Why?

1

Theoretical Base:
Le Roux N, Bengio Y. Representational power of restricted boltzmann machines and deep belief networks. 
Neural Comput. 2008 Jun;20(6):1631-49. doi: 10.1162/neco.2008.04-07-510. PMID: 18254699.

Pros:
● More expressive latent space
● Better Data Adaption
● Low-energy states are more 

probable
● Parameters jointly trained with 

VAE parameters

❖ Increasing the number of hidden units in RBMs leads to enhanced modeling power.
❖ RBMs are universal approximators of discrete distributions. (RBMs are theoretically capable of 

representing any discrete probability distribution given enough hidden units)

Cons:
● Computationally expensive: block 

Gibbs sampling
● Slower than traditional method 
● Quality: block gibbs steps
● Limited GPU memory
● Correlations among samples?



What to learn:

Also called autoencoding loss, reconstruction loss. It is used to measure the difference 
between the original input data and the reconstructed data.

Use the KL divergence as part of the loss function to measure the difference between the encoder 
output distribution (approximate posterior) q(z|x,e) and the prior distribution p(z).

Hit loss: We build the input labels (y) and reconstructed labels (y’) by making each zero energy 
pixel label be 0 and non-zero pixel be 1. It is used to learn and normalize the output hit pattern.
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CNN Embedded Encoder & Decoder
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