

Quantum-assisted Deep Generative Calorimeter Surrogate

Hao Jia TRIUMF & UBC May.30rd, 2024

Background

- Detector simulation used almost 40% of the computing resources of the ATLAS experiment for LHC Run 2 analysis.
- Current techniques for Calorimeter shower simulation are computationally expensive

Wall clock consumption per workflow

Figure 1: ATLAS CPU hours used by various activities in 2018

[1] P. Calafiura et al. ATLAS HL-LHC Computing Conceptual Design Report. Technical report, CERN, Geneva, Sep 2020 [2] AtlFast3, https://arxiv.org/abs/2109.02551

Background

- Detector simulation used almost 40% of the computing resources of the ATLAS experiment for LHC Run 2 analysis.
- Current techniques for Calorimeter shower simulation are computationally expensive.
- Need to develop a faster, computationally cheaper detector simulation techniques for HL-LHC.

[1] P. Calafiura et al. ATLAS HL-LHC Computing Conceptual Design Report. Technical report, CERN, Geneva, Sep 2020 [2] AtlFast3, https://arxiv.org/abs/2109.02551

Dataset

- 100,000 GEANT4-simulated electron showers (1 GeV to 1 TeV)
- The geometry features a concentric cylinder structure with 45 layers
- Each layer has 144 readout cells, 9 in radial and 16 in angular direction, yielding a total of 9x16x45 = 6480 voxels
- Each event: {input_energy: 1x6480 tensor}

The image shows a 3d view of a geometry with 3 layers, with each layer having 3 bins in radial and 6 bins in angular direction.

Dataset

Variational Autoencoder

Training

Variational Autoencoder

Training

CERN

Prior: Restricted Boltzmann Machine

4-Partite RBM based on D-Wave's Pegasus Topology

For
$$\mathbf{x} = (1, 0, 1, 1, 0, 1, ..., 0, 1)$$

 $P(\mathbf{x}) = \frac{1}{Z}e^{-E(\mathbf{x})}$, where $Z = \sum_{\mathbf{x}} e^{-E(\mathbf{x})}$

$$E(\mathbf{x}) = -\sum_{\substack{\rho,\sigma \in \{a,b,c\} \\ \rho \neq \sigma}} \sum_{i,j} w_{ij}^{\rho\sigma} x_i^{\rho} x_j^{\sigma} - \sum_{\rho \in \{a,b,c\}} \sum_i b_i^{\rho} x_i^{\rho}$$

where $x_i \in \{0,1\}, w_i, b_i$ are trainable weights and biases.

- Energy Based Model
- More expressive than traditional Gaussian prior.
- Classically, we use Markov-chain to get samples.

Move to QPU: Quantum Annealing

$$\mathcal{H}(s) = A(s) \sum_{l} \sigma_{l}^{x} + B(s) \left[\sum_{l} \sigma_{l}^{z} h_{l} + \sum_{l < m} J_{lm} \sigma_{l}^{z} \sigma_{m}^{z} \right]$$

 h_l is the magnetic field acting on spin I J_{lm} is the interaction strength between spins I and m σ_l^z is the spin variables, which can take values of +1 or -1

Quantum Annealing:

- Start with A(0) >>B(0) end up with A(1) << B(1)
- start in quantum superposition state and end up in a classical state
- Fast! One anneal = 1 sample
- Independent samples each time!

Annealing functions A(s), B(s) in 1 QA cycle

Move to QPU: Quantum Annealing

Results

Synthetic Images Generation Rates Comparison				
Туре	GEANT4	A100 GPU	Total QPU Access	QPU Annealing
Time per sample	~1s	~2ms	~0.2ms	~0.02ms

Performance Evaluation

Performance Comparison on Sparsity Index

Ongoing: Energy Conditioned Prior

Binary Encoded Input Energy

- For better sampling quality
- Have finished the classical training stage
- Use strong MF to configure D-Wave states
- Currently slow, need to cooperate with D-Wave

Summary

- We have shown that it is possible to utilize the Quantum Processing Unit for generating Restricted Boltzmann Machine samples, which facilitate the generation of particle showers.
- Quantum Processing Unit sampling is significantly faster than traditional Monte Carlo methods, maintaining high-quality shower image generation.
- Energy conditioned prior turns out to perform better, but more work needs to be done on the D-Wave end.

The Team

Supervisors:

- > Wojciech T. Fedorko
- Maximilian Swiatlowski
- > Colin Gay
- > Alison Lister
- Geoffrey Fox
- Eric Paquet
- > Roger G. Melko

Students & Postdocs:

- Javier Q. Toledo-Marín
- ≻ Hao Jia
- Abhishek Abhishek
- Sebastian Gonzalez
- > Deniz Sogutlu
- Soren Andersen
- Sehmimul Hoque
- Lan Liu

The Team

Supervisors:

- > Wojciech T. Fedorko
- Maximilian Swiatlowski
- > Colin Gay
- > Alison Lister
- Geoffrey Fox
- Eric Paquet
- > Roger G. Melko

Students & Postdocs:

- Javier Q. Toledo-Marín
- ≻ Hao Jia
- Abhishek Abhishek
- Sebastian Gonzalez
- > Deniz Sogutlu
- Soren Andersen
- Sehmimul Hoque
- ≻ Lan Liu

Thanks! / Questions?

Backup

Restricted Boltzmann Machine: Why?

Theoretical Base:

Le Roux N, Bengio Y. Representational power of restricted boltzmann machines and deep belief networks. Neural Comput. 2008 Jun;20(6):1631-49. doi: 10.1162/neco.2008.04-07-510. PMID: 18254699.

- Increasing the number of hidden units in RBMs leads to enhanced modeling power.
- RBMs are universal approximators of discrete distributions. (RBMs are theoretically capable of representing any discrete probability distribution given enough hidden units)

Pros:

- More expressive latent space
- Better Data Adaption
- Low-energy states are more probable
- Parameters jointly trained with VAE parameters

Cons:

- Computationally expensive: block Gibbs sampling
- Slower than traditional method
- Quality: block gibbs steps
- Limited GPU memory
- Correlations among samples?

What to learn: $Loss = Loss_{MSE} + Loss_{KL} + Loss_{BCE}$

•
$$\operatorname{Loss}_{MSE}(\mathbf{x}, \mathbf{x}') = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{x}'_i)^2$$

Also called autoencoding loss, reconstruction loss. It is used to measure the difference between the original input data and the reconstructed data.

Use the KL divergence as part of the loss function to measure the difference between the encoder output distribution (approximate posterior) q(z|x,e) and the prior distribution p(z).

• Loss_{BCE}(
$$\mathbf{y}, \mathbf{y}'$$
) = $\frac{1}{N} \sum_{i=1}^{N} [y'_i \cdot (-\log(\sigma(y_i))) + (1 - y'_i) \cdot (-\log(1 - \sigma(y_i)))]$

Hit loss: We build the input labels (y) and reconstructed labels (y') by making each zero energy pixel label be 0 and non-zero pixel be 1. It is used to learn and normalize the output hit pattern.

