


DEAP-3600

* Dark matter Experiment using
Argon Pulse shape discrimination

* Single-phase dark matter direct
detection experiment at SNOLAB.

* In addition to the WIMP search
there are other studies using DEAP
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Neutrino Absorption

* Initial paper by R. S. Raghavan (1986)
proposed that low energy neutrino
Interactions could be observed via the
super-allowed 0* = 0* Fermi transition
from the ground state of “°Ar to an
excited state of 4°K.
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* This excited #°K state would decay
through characteristic gamma rays to
the ground state. 02 | =l ey
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40Ar = 40K™ transition

* M. Bhattacharya et al. measured Gamow-Teller (GT) strengths for
transitions from 4%Ar to 4°K*

* Energy threshold decreased from 5.885 MeV (Fermi) to 3.9 MeV (GT)
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Solar Neutrino Spectrum
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Given the cross-sections and flux
integrated over energy, we expect
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From SNO results we have a measurement of the 8B solar neutrino integrated flux
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Search Regions

0° Preliminary

Dela¥ed Coincidence

* Unique neutrino signature
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* Neutrino signal << background
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High-Energy Region
* Counting experiment
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* Neutrino signal > background

4.4 MeV gamma

from AmBe source

DEAP
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* Accurate background model
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Expected Signal

Delayed Coincidence Region

Eprompt = Fe + Z E,
4

Sum of gammas until it reaches the
1.64 MeV metastable state

Metastable state has a mean lifetime of 480 ns
Edﬁgaygd = 1.64 MeV

0*2 AM=1.5 MeV
L{gArzz M

(99.64%)

b, = Eprompt + Ed&iay&d + 1.0 MeV

{ Energy of neutrino }




Expected Signal

High-Energy Region

Counting excess high-energy events
over expected background

E,=E.+) E,+15MeV

Energy of neutrino
E,=FEups+ 1.0 MeV
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AM=1.5 MeV




High-Energy Pile-Up Algorithm

Preliminary

* |dentify peaks by
when the
waveform
derivative passes a
certain threshold. v e sbe ot heted  tabed | e

Time [ns]

[ Waveform J

Pulse Height [ADC]

e Qutputs time and
height of each :
peak among other
quantities. [ Derivative ]
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Data-Driven Delayed Coincidence Energy Model

* Use this model to identify the
1.64 MeV delayed signal

* Not trivial to find delayed
energy peak because it can be
affected by the prompt peak

First Pulse
Second Pulse
—— 5Sum of Both Pulses

Model Procedure :

1.

2.

Fit single peak height-energy distribution
> prompt energy model E,..,:(ph1)

Delayed coincidence is
Edelayed — Etotal — Eprompt (ph1>

Fit known peaks in calibration and
physics data = refine model

208T| delayed
energy fit




Data-Driven Delayed Coincidence Energy Model
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Example of fit results
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Table of physics data delayed energy peak fits
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calc,prompt — 2.19 MeV - J
H (n,y) candidate 1
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Isotope | Expected Energy | Fit Energy | Fit Energy Sigma
[MeV] [MeV] [MeV]

1---|..I...I...I...I...I.. S— ‘

0 2000 4000 6000 8000 10000 12000 14000 16000 | 'K 1.460 1.460 8.632¢-2
Time (ns) 21p; 1.764 1.730 8.637e-2

208 2.615 2.584 6.915¢-2




Cosmogenic Background
U

Cherenkov

- ol light * Muons passing through or near the
. j{l #-

J~ water tank

* Selecting scintillation events in LAr in
prompt coincidence with a muon

veto PMT trigger from Cherenkov light
In the water tank.




Radiogenic Background

[ Main source : Neutron capture events

from 238U decay in the PMT glass




Radiogenic Background

Main source : Neutron capture events
from 238U decay in the PMT glass

[ Undergoes an (a, n) producing a neutron




Radiogenic Background

Main source : Neutron capture events
from 238U decay in the PMT glass

[ Undergoes an (a, n) producing a neutron ]

Neutron captured by material in the
detector




Radiogenic Background

Main source : Neutron capture events
from 238U decay in the PMT glass

Undergoes an (a, n) producing a neutron ]

detector

Neutron capture isotope de-excites
through a series of gamma rays

[ Neutron captured by material in the ]




Neutron Capture Gammas

* Geant4 is not good at
conserving energy in individual
neutron capture interactions.

y

Probabilit

-20 20
(n,y) Q Value - Z Gamma Energies [MeV]

/~  Example from MC truth:
S6Fe neutron capture to °’Fe
Q Value =7.65 MeV
Total gamma energy = 16.99 MeV
7 gammas emitted : 7.28, 4.81,

\_ 2.87,0.90, 0.66, 0.35,0.12 MeV /

* The energy of each individual
gamma are valid transition
energies but not following a
consistent de-excitation path




G4CASCADE - Modelling neutron capture gammas

* A Geant4 extension to conserve neutron capture energy and
number of gammas given the neutron capture isotope and
ENSDF database.

De-excitation from 2C(n,y)
et 1 0 * Probability of de-excitation for a given
branch is weighted according to its
s 0ss Intensity.
~ "+ Process repeats at each new energy level

— T in the cascade until the ground state.

> 10% <1

0.0 stable

Source: 12C(N,G) E=TH file from
https://www.nndc.bnl.gov/ensdf/




G4CASCADE - Modelling neutron capture gammas

[ Example of the energy of individual gammas emitted during >3Cr neutron capture ]

[ Without G4ACASCADE } [ With G4ACASCADE J

Preliminary
f— j ' j l ' ' '
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Summary

* DEAP-3600 is looking to make the
first observation of neutrino
absorption in 4°Ar using DEAP-
3600. Future LAr experiments
should be able to make higher
statistic measurements.

* Current work focuses on finalizing
radiogenic background model for
the high energy region.
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