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Ultracold Neutrons (UCN)

Neutrons that are moving so slowly that they bounce off surfaces and can be
bottled.

Ultracold neutrons (UCNSs) have very low energies, below 300 neV. At such low
energies, they are affected by magnetic, gravitational, and material potentials-
strong force, that can be achieved in a laboratory environment.

—v<8m/s =30 km/h

—T<4mK (-273.15 °C)

— K.E. <300 neV




Graph of loss per bounce versus fermi potential
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Pulsed Laser Deposition Facility at University of
Winnipeg

Substrate/Tube

Excimer Laser -, /

248nm Graphite target

Vacuum deposition chamber
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-HV discharge creates meta-stable KrF dimer.

Ablation plume

-A KrF dimer relaxes, emitting a UV photon
which stimulates the other dimers to emit a UV
photo too.

Graphite target

Laser Beam

-Produces ~1J/pulse of 248 nm light.

Real carbon plasma plume




Tube coating chamber
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Some DLC coated samples

Various parts that can be coated:

Tubes | ~17-9” inner diameters/ ~1m long

Rods | % and %2” outer diameters/ ~1m long

Plates | ~5” discs to (30” dia. a year from now)

1 mlong DLC coated quartz tube Train of DLC- coated AI tubes



Video of DLC coating- Al tube




Coating analysis

Film Property

Thickness

Density/Fermi Potential

Elemental composition

Surface roughness

Si withess
strip along
each tube

Surface Science
Technique

Profilometry, Ellipsometry,
Depth profiles

SANS, XPS, XRR
XPS, SEM-EDS

AFM, 2D profilometry

Step height measurement

-We use a stylus profilometer to
measure the thickness and surface
roughness of the DLC coatings
accurately.

-The TUCAN EDM experiment needs
DLC films that are > 150 nm.

-Basheer Algohi will be talking XPS
analysis on tuesday in the postleor
session



Status and Future

-2024 Summer —Optimize DLC on Aluminum:

Multilayer coating: Chromium (Cr) then DLC- for better adhesion, vary laser energy on target
(spot size and laser energy), collimate parts of the ablation plume, etc.

-Fall 2024: produced several 1 m long DLC coated tubes.

-Winter/Spring 2024: Test with UCN at JPARC or TRIUMF.

-Goal to be in UCN Guide production for TRIUMF in 2025.
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Collaboration meeting at
University of Winnipeg, Feb

2024




Guide Coating Facility is open for Collaboration
and providing coatings for your experiment-
Thank you! |
Russell Mammei:
r.mammei@uwinnipeg.ca

Abeer Zahra:
zahraa@myumanitoba.ca
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Residual gas analyzer

Ultracold Neutron Interactions

UCN ~ kinetic energy <350 neV /wavelength>50 nm / velocity < 8 m/s

« Gravity V, =mgh~100nel per meter

* Weak interaction n = p+e+v,,782kelV

— beta decay

. Magnetic interaction ¥, =—#® B =+160nel per Telsa

— Changing magneticfield > [/ =-VV = Vbl ° B]

Strong interaction responsible for UCN reflection

Can store/transport UCN on times comparable to their lifetime
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The TUCAN EDM experiment needs DLC films that are > 150 nm.
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From 1styr quantum mechanics:

UCNs have very low kinetic energy, so they
are very sensitive to potential barriers. DLC
coating acts like a potential barrier.

DLC thickness greater than 150 nm ensures-
-Neutrons don't tunnel through the barrier
(keeping more neutrons contained)

-The potential barrier is high enough to keep

Figure 3.2: Transmitted UCN versus coating thickness for several different Fermi Potentials. the neutrons tl"apped.

The standard UCN distribution, v2dv up to the critical velocity associated with each Fermi
Potential, was employed. Figure modified with permission from Mark Makela [111].
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