

Establishing evidence for the Higgs boson dimuon decay using the ATLAS detector

Bryce Norman

CAP Congress - 2024

Department of Physics

The LHC and ATLAS

- The Large Hadron Collider (LHC) is the world's largest particle collider
 - Protons accelerated around 27 km ring and collided at centre-of-mass energy of 13.6 TeV
- ATLAS is the largest general-purpose detector on the LHC
 - Helped discover the Higgs boson in 2012
 - Cylindrical detector consisting of many subsystems wrapped in layers
- ATLAS is currently collecting data during LHC Run 3

The Higgs Boson

- The Higgs boson was discovered in 2012 by ATLAS and CMS
 - Interactions with the Higgs field give the fundamental particles in the Standard Model mass
 - A particle's mass is proportional to its coupling with the Higgs boson
- We have only observed (>5σ significance) the Higgs boson interacting with very massive Standard Model particles
 - W and Z bosons, top and bottom quarks, τ lepton

https://arxiv.org/pdf/2207.00092

Department

$H \rightarrow \mu \mu$

- Want to measure a Higgs coupling to a second-generation particle at a much lower, untested mass scale
 - The Higgs to dimuon decay provides the best opportunity
 - Due to the small muon mass, this is a very rare process, and a Higgs boson will only decay to two muons 0.022% of the time
- Previous ATLAS result for Higgs to dimuon decay observed 2σ significance from full run-2 dataset (2015-2018 data)
 - Very low signal-to-background ratio due to low branching ratio

Establishing Evidence for $H \rightarrow \mu \mu$

- Very challenging to measure $H \rightarrow \mu\mu$
 - Need to improve analysis to establish evidence (3σ significance)
- Possible improvements include:
 - Improved Final State Radiation (FSR) recovery
 - Implement deep learning
 - Density reweighting of MC to better model background processes
 - Splitting data into optimized categories
 - Increase statistics with data taken during LHC Run-3

Dimuon invariant mass spectrum for 2022 ATLAS data and Monte Carlo (MC) simulations. $H \rightarrow \mu\mu$ signal is scaled by x100.

Department

FSR Recovery

- After the Higgs boson decays to two "Born" muons, one or both may emit a Final State Radiation (FSR) photon
 - If we only reconstruct the Higgs candidate using the "bare" muons after FSR emission, we are missing the energy carried away by the photon
 - We want to recover this FSR and add it to our muons ("dressed" muon includes FSR photon) before reconstructing Higgs candidate

FSR Recovery Improvements

- FSR recovery was performed during run-2 ATLAS analysis
 - FSR candidates were selected based on $p_{\rm T}$, angle from muon (ΔR) and energy deposited by candidate in EM calorimeter
 - If we add in the truth FSR correction in MC we see that there is room for improvement
 - Idea: Try phase space dependent cuts (p_{T} and η of FSR) and include new parameters such as predefined identification working points (WP)

to the best possible correction (blue). Red shows improvement using run-2 FSR correction.

FSR Recovery Improvements

- Improved cuts were found that get FSR recovery closer to the truth correction
 - It is possible to achieve a lower fake rate and higher efficiency than previous run-2 correction in signal events
 - New method moves 1.44% more signal events to 120-130 GeV window
 - Results are based on run-2 MC, need to investigate for run-3
 - Need to investigate impact of cuts on background

Truth FSR p_T	Run-2 Cuts	"V0" Cuts	"V1" Cuts
	Fake rate /	Fake rate /	Fake rate /
	Efficiency	Efficiency	Efficiency
3.0-7.5 GeV	44.92% /	34.18% /	37.55% /
	66.66%	55.03%	59.66%
7.5-30.0 GeV	15.06% /	11.25% /	14.38% /
	92.80%	92.73%	95.56%
30.0-125.0 GeV	<mark>6.20%</mark> /	4.77% /	<mark>5.69%</mark> /
	85.50%	95.55%	95.67%

Departmen

Event Categorization

- Data events that pass selection for the analysis are split into mutually exclusive categories for analysis
 - Categories are based on the properties and kinematics of the events measured by the ATLAS detector
 - Some of these categories will have better signal-to-background ratios
 - By extracting the Higgs signal from these categories separately we will see a large increase in the overall statistical significance
 - Run-2 categories were defined based on different Higgs bosons production modes (E.g., gluon-gluon fusion, vector boson fusion)
 - If we can improve categorization it would lead to an increase in significance

Gluon-Gluon Fusion (ggF)

Using NN to Determine Categories

- What if we use machine learning to select optimal categories?
 - Variables from each event will be provided to a neural network (NN)
 - Want to use variables with separation between signal and background
 - Modern deep NNs are very powerful and should be able to differentiate between Higgs signal events and background events
 - NN will develop a classifier which can be used to determine if data events are "signal-like" or "background-like"

Department

of Physics

Universitv

Using NN to Determine Categories

- The dimuon invariant mass is an important variable that we want to use to in our final fit to extract the Higgs signal
 - We ideally want a smooth, flat background the we can model and subtract
- Problem: The NN could learn the Higgs mass and shape the background to look like a Higgs peak in $m_{\mu\mu}$
 - Special care needs to be taken to make sure the NN doesn't shape a bump around the expected Higgs mass

Distance Correlation (DisCo)

- Problem: We do not want the output of the NN network classifier to be correlated with the dimuon invariant mass $(m_{\mu\mu})$
- Solution: Add an additional term to the loss function of the NN which penalizes it for being correlated with $m_{\mu\mu}$
 - Loss function is a measure of how well the NN models the training data
 - The NN will aim to minimize this loss during training

$$L_{\text{total}} = L_{\text{classification}}(\vec{y}, \vec{y}_{\text{true}}) + \lambda \mathrm{dCorr}_{y_{\text{true}}=0}^2(\vec{m_{\mu\mu}}, \vec{y})$$

- Want to use a metric that can capture non-linear dependence between distributions
 - Use the distance correlation metric (DisCo)

$$dCorr^{2}(X,Y) = \frac{dCov^{2}(X,Y)}{dCov(X,X)dCov(Y,Y)}$$

 $dCov^{2}(X,Y) = \langle |X - X'||Y - Y'| \rangle + \langle |X - X'| \rangle \langle |Y - Y'| \rangle - 2\langle |X - X'||Y - Y''| \rangle$

Training the NN

- · Let's read in a sample signal and background dataset
 - VBF $H \rightarrow \mu\mu$ signal MC
 - Drell-Yan $Z \rightarrow \mu\mu$ background MC (main background process)
 - Give the NN the kinematics of the muons and jets for training
- Train one NN with a common loss function (binary cross entropy) and a second NN with an additional DisCo term
 - Want to compare the performance of the two NNs and their correlation with the dimuon invariant mass

Mass appears to have good discriminating power. Background has mean around Z boson mass, signal has mean around Higgs mass

Results

- NN with DisCo performs worse but is less correlated with $m_{\mu\mu}$
 - Receiver operating characteristic (ROC) curve shows the performance of the NN at different thresholds
 - NN using DisCo is penalized for any correlation with $m_{\mu\mu}$, so it performs worse (which is expected)
 - Both NNs have highest correlation with jet momentum
 - NN using DisCo has less correlation with $m_{\mu\mu}$ (DisCo is working!)

	Binary Cross Entropy	Binary Cross Entropy + DisCo
DisCo($p_{T}^{\mu 1}$, NN output)	0.0256	0.0547
DisCo($p_{T}^{\mu 2}$, NN output)	0.0769	0.0737
DisCo(p_T^{j1} , NN output)	0.3220	0.3462
DisCo(p _T ^{j2} , NN output)	0.2813	0.4154
DisCo(m _{μμ} , NN output)	0.1570	0.0718

Conclusion

- The Higgs to dimuon decay provides the best opportunity to measure a Higgs coupling to a second-generation fermion
- Due to the small branching ratio of $H \rightarrow \mu\mu$, this is a very difficult process to measure
- Improvements in analysis and more statistics are required to establish evidence for this process with the ATLAS detector
- FSR recovery improvements could move more Higgs signal events into our signal window, increasing the signal-tobackground ratio
- Optimized categories could result in increased statistical significance of this measurement
 - NNs can be used to develop categories
 - DisCo can be used to prevent the NN from shaping the background

Backup

Department of Physics

Effect of Hyperparameter

• The amount of loss contributed by the correlation between the NN output and $m_{\mu\mu}$ is controlled by a hyperparameter lambda

 $L_{\text{total}} = L_{\text{classification}}(\vec{y}, \vec{y}_{\text{true}}) + \lambda d\text{Corr}_{y_{\text{true}}=0}^2(\vec{m_{\mu\mu}}, \vec{y})$

- What happens when we vary this hyperparameter?
 - As we increase lambda, correlation with m_{µµ} decreases
 - As we increase lambda the performance of the NN also decreases
 - Note that output of NN can vary between trainings, findings are still very preliminary

Leading Muon pT

Leading let p_T

1.25

University

0.75 1.00

Hyper-parameter

1.50

eton

1.75

2.00

Departmen

17

Sub-Leading Muon p_T

Sub-Leading Jet pT

