CAP Conference 2024

Improving the Radon Trapping Capability at SNOLAB using Activated Charcoal

CASST 2023 Winner

Yusuf Ahmed

Supervisors: Dr. Nasim Fatemighomi & Lina Anselmo

Why is ²²²Radon A Problem?

Radioactive, inert, gas

SNO+

Uranium Ore

What is a Radon Assay?

The extraction and counting of radon from a sample of fluid.

Surface DEAP Gas Assay Board

Underground UPW Assay System

Why do we need a better trap?

What we required: Retainment of efficiency at high flow rates

The Progress So Far

STEP 1: Making the Trap

Activated Charcoal

Greater heat capacity & surface area. (In principle, can sustain longer and higher flow rates)

STEP 2: Making a Calibration Source

STEP 3: Trap Background Assays

<u>Table 1</u>: Activated charcoal gamma counting results (2 weeks of counting)

	238U from 226Ra [mBq/kg]	238U from 234Th [mBq/kg]	232Th [mBq/kg]	210Pb [mBq/kg]
Pre-Acid Wash	465.5 ± 47.4	< 327.12	114.5 ± 37.6	< 1260.10
Post-Acid Wash	< 33.25	< 42.92	99.8 ± 20.1	< 548.20

Average Trap Background:

 29.42 ± 7.35 Radon atoms/day 1.2 ± 0.3 Radon atoms/hour

STEP 4: Preliminary Qualitative Assays

Activated Charcoal

Extrapolated Source Emanation (Radon atoms/day at 1L/min)

Bronze Wool

STEP 5: Determining Source Emanation Rate

Calibration Can

DEAP Assay Board

STEP 6: Varying Cryogen Temperature

Reagent Alcohol + LN₂

- Confirm the reproducibility of results.
- Test new polymer based activated charcoal beads.
- Sample underground cover gas systems.

<u>A New Project</u>: Improving Radon Counting

Lucas Cell:

- Low energy resolution
- Cannot distinguish radon's alpha
- Pb²¹⁰ background build up

Spherical Proportional Counter:

- High energy resolution
- Can distinguish radon's alpha
- Pb²¹⁰ can physically be removed

Thank you!

Supervisors: Dr. Nasim Fatemighomi & Lina Anselmo

Mentors: Dr. Pierre Gorel, Dr. Mark Ward, Dr. Alex Wright, Dr. Ian Lawson, Dr. Christine Kraus, Juliette DeLoye, Syed Adil Hussain, Deena Fabris.

14

SUPPLEMENTARY SLIDES

Background Assays

