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LEGEND - Large Enriched Germanium Experiment for Neutrinoless ββ Decay
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Aims to develop a phased, Ge-76 based double-

beta decay experimental program with discovery

potential at a half-life beyond 1028 years

0nββ in Ge:

Single point-like 

energy deposition

in 1 mm3 volume



High Purity Germanium Detector
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Single site event

Multi site event

Simulation: Real detector pulse: 

Point contact detector



Signal Denoising with Machine Learning
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• Improve measurements of pulse shape characteristics

➢ Better energy resolution and background rejection efficiency

• Help identify low-energy signal events that are masked by electronic noise

• Could push for a lower energy threshold

• Fast processing once model is trained; scalable

• Applicable to other detector technologies and one-dimensional electronic signals

• Trained models can be extended to other applications, e.g. pulse shape

discrimination, drift time measurement

Especially useful for BSM 
studies and background 
identification



Data for training, validation and testing
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Sources of data (collected from a PPC detector in GeRMLab at Queen’s):

• Simulated clean pulses for the PPC detector

• Calibration data with known energy distributions: 241Am (60 keV, low energy/high noise); 60Co (1173 keV and 1332 keV, 

high energy/low noise)

• Pure detector noise (for data augmentation)

Synthetic Data Augmentation:



Denoising with Convolutional Autoencoder
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[Anderson, M. R. et al., “Performance of a convolutional autoencoder designed to 
remove electronic noise from p-type point contact germanium detector signals,” 
Eur. Phys. J. C 82, 1084 (2022). arXiv:2204.06655; doi:10.1140/epjc/s10052-022-
11000-w]

• A generic autoencoder maps its input back to its input

o Compresses input data down to only the essential features 

(latent layer), then reconstruct the original input from this 

compressed representation

o Only the most important information are stored in the 

latent layer

https://arxiv.org/abs/2204.06655
doi:10.1140/epjc/s10052-022-11000-w


Denoising with Convolutional Autoencoder

Regular model: maps a noisy pulse to its corresponding clean pulse. Removes noise by reinforcing the model to 

reconstruct the clean signal from the noisy input

Noise2Noise model [2]: trained without simulation/clean pulses. Maps a noisy pulse to another noisy pulse 

with the same underlying trace. Model learns the mean of the distribution of the noisy pulses, which is the 

unobserved underlying true pulse 
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Autoencoder Results
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On synthetic data with detector noise (Am-241 60keV peak):

• Superior over traditional denoising methods from MSE

• Improvement on energy resolution at various noise levels 

On real detector data (Am-241 60keV peak):

• Better statistical agreement between noisy and denoised 

pulses than best fit library pulse via 𝜒2 fit

• Requires lower shaping time → shorter waveform length and 

more efficient data storage/analysis

• Less substantial improvement on energy resolution due to 

unmodelled effects in real data, e.g. multiple sources of 

exponential decay that pole-zero correction did not account for 

denoised vs. trapezoidal filtered

[1]



A First Look at Noise2Noise Autoencoder Denoiser 
on LEGEND Low Energy Dataset

• Denoised by a pre-trained Noise2Noise model

• As a first look, the N2N model was trained with pole-zero corrected PPC detector data and noise traces

collected at Queen’s lab. We expect the model to perform even better on LEGEND data once it is trained

further with LEGEND data, possibly without the need of any exponential decay correction
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Further Investigation on Denoising without Simulation/Clean Data

• Training a denoiser without clean ground-truth pulse or simulated data is more

practical, and it allows for a more realistic, flexible model, unconstrained by

simulations

• Noise2Noise model works well if it is trained on a large amount of data

• There are many recent novel methods to explore that could provide further

improvements
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Dual Critics Generative Adversarial Network
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Generative Adversarial Network (GAN) [3]:

• Consists of a generator and a 

discriminator/critic

• Generator G generates samples x

from z, and the critic C tries to 

determine whether the samples are 

from the real or generated data

z x

G

real or fake?

C

Dual Critics GAN [4]:

• Consists of one generator and two critics 

denoised denoised + noise = fake noisy

noisy – denoised = fake noise

𝑦𝛿: detector pulses 
𝜂: detector noise traces



Dual Critics GAN Preliminary Results
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On synthetic data with detector noise (Am-241, 60keV peak):

• More GPU intensive to train than Noise2Noise autoencoder since this model contains multiple 

neural networks

• Had to train on shorter pulses due to large model size and GPU limitations

• GAN could be difficult to train and time-consuming to tune



Other Methods
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CycleGAN [5]:

• Good performance when trained and tested on synthetic data

• Does not require paired clean and noisy pulses for training – more realistic training condition

• However, not a good candidate for training without ground truth/clean pulses

• Like many GAN methods, it can often be unstable, hence difficult to train

Denoising Diffusion Probabilistic Models [6, 7]:

(Work in progress)

• The diffusion model is a newer generative model that has recently been shown to often 

outperform GAN 

• More stable to train and less GPU intensive than GAN

• Shows promise in generating realistic detector pulses – could aid, validate or replace complex 

detector pulse shape simulation

[8]



Summary

• Developing a denoising method for HPGe detectors that does not need ground truth for training

• Noise2Noise is the most promising method we have tested so far

o Could be further improved using a different neural network, e.g. U-Net, instead of autoencoder

o Currently testing on LEGEND data; will be trained with LEGEND data as well

o Applicable to other detector technologies – shown excellent performance on spherical proportional counters 

and bubble chambers 

• GAN might not be the best candidate for denoising

• Exploring diffusion model for both denoising and pulse shape simulation
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Backups
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High Purity Germanium Detectors

• 76Ge is a potential candidate for 0nbb : Source = detector, high efficiency, low intrinsic background

• Can be enriched to >90% in Ge-76 

• Excellent energy resolution: 2.5 keV FWHM @ 2039 keV (Qββ )

• Scalable technology

• Background rejection capabilities (especially point contact detectors):

o Multiplicity-based rejection in arrays

o Surface event rejection

o Multi-site event rejection (0nbb would be a single site event)
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GAN
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CycleGAN
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