

An aerogel Cherenkov threshold counter for the Water Cherenkov Test Experiment

Sirous Yousefnejad

On behalf of WCTE collaboration

CAP Congress, London, ON May 27, 2024

• A long-baseline neutrino experiment aiming to improve the sensitivity of studying neutrino oscillations, expected to collect first data in 2027.

- IWCD enables extracting nearly mono-energetic neutrino spectrum before oscillation, thus eliminating the need to reconstruct energy using theoretical models of neutrino interaction.
- The same type of intermediate/far detectors with the same angular and momentum acceptance allows comparison without relying on detector response simulations.
- Combination of independence on neutrino interaction model and detector response allows minimizing systematic uncertainties in oscillation analysis.

Photosensors

mPMT

IWCD

7 m ø x 8 m tall (ID) 370 mPMTs Operation from 2027

Hyper-K

68 m ø x 71 m tall 20,000 20-inch PMTs 800 mPMTs (200 LED-mPMT) Operation from 2027

39 m ø x 41 m tall 11,000 20-inch PMTs Operating now,

• Multi-PMTs are a major part of Canada's contribution to Hyper-K.

Photosensor calibration

WCTE physics

- Antineutrino interactions tend to produce neutrons, while neutrinos tend to produce protons
- Capability to tag antineutrinos vs. neutrinos with neutron detection is limited by secondary production of neutrons (right)
- WCTE will measure secondary neutron production
- Important for using neutrons to ID antineutrino events in Super-K

- Electrons are identified as "fuzzy" rings in WC detectors due to EM shower
- High energy gammas can fake electron
- WCTE will study capability to tag gammas by additional light produced by e+epair at beginning of shower
- Gammas can also be used to study pion photoproduction, which is important for understanding gamma production through pion production in neutrino interactions
- Requires tagged photon beam

Example electron ring in Super-K

- Operation in WCTE will be a major milestone towards delivery of mPMTs for IWCD!
- WCTE can be seen as testbeds for detector systems, calibration techniques and event reconstruction to be used in IWCD and Hyper-K.
- WCTE measurements can be inputs to Super-K measurements in the near term.

IWCD

Aerogel Cherenkov Threshold (ACT)

ACT detectors are intended for pion/muon separation and electron vetoing in the range of 0.2-1 GeV/c.

		Threshold momenta (GeV/c)			
n	Thickness (cm)	μ	π	Κ	р
1.006	8+8	0.9625	1.2578	4.4937	8.5499
1.01	6+6	0.7448	0.9733	3.4773	6.6161
1.015	6+6	0.6079	0.8028	2.8397	5.3953
1.02	6+6	0.5253	0.6865	2.4527	4.6667
1.03	4+6	0.4279	0.5592	1.9977	3.8009
1.047	8+8	0.3404	0.4449	1.5894	3.0240
1.06	4+6	0.3003	0.3925	1.4022	2.6680
1.11	2+2	0.2191	0.2864	1.0233	1.9469
1.13	2+2	0.2006	0.2622	0.9368	1.7825
1.15	2+2	0.1859	0.2430	0.8681	1.6517

n=1.13: $p_{th}(\pi)$ =0.262GeV/c, $p_{th}(\mu)$ =0.200GeV/c

Measurements are done around the pion cherenkov threshold.

Analysis approach

- The TOF current resolution is around 240 ps, allowing separation up to 280 MeV/c.
- TOF cut to separate protons, 2D cuts in ACT23 vs ACT1 to separate e, mu, pi.

No proper separation at low indices

10

Scintillation from reflector material of ACTs

- Life time of the scintillation light is tens of nsec.
- Light emission below Cherenkov threshold, more for protons due to larger dE/dx..

Run 435 - 500MeV/c (pos) n = 1.02

Run 435 - 500MeV/c (pos) n = 1.02 100 Except electrons, all are below cherenkov threshold. 80 Ы fotal ACT23 window lumber of trigger 10¹ d 0.5 0.3 0.4 10.2 Peak integrated lead glass negative beam 280 MeV/c 280MeV/c operation momentu 15 TOF (nsec)

Summary

- Hyper-K is a long baseline neutrino observatory aiming to improve neutrino oscillation studies.
- Canada group developed multi-PMTs for Hyper-K.
- WCTE will be major milestone towards delivery of mPMTs for IWCD!
- WCTE beam monitors enables sub-GeV π/μ separation by Aerogel Cherenkov (ACT) and TOF.

End of Slides

Momentum measurement

Compare separation as a function of energy. Energy bias mainly in positive range (antiparticles)

