DIGITAL CALORIMETRY

Performance Analysis of the CALICE-Digital Hadronic Calorimeter (DHCAL) for pion measurements

Yasmin Naghizadeh

M.Sc., McGill University

Supervisor: François Corriveau

CAP Congress

May - 2024

CALICE – PARTICLE FLOW CALORIMETRY

- Need precision measurement of Standard Model
- Particle Flow Algorithm (PFA):
 - Identify individual particles in a jet
 - Improve the jet energy resolution
 - By using high granularity detectors

- CALICE detectors: Energy measurements, Tracking abilities and Timing
- Electromagnetic and Hadronic calorimeters (both analogue and digital)

DHCAL, MIN-DHCAL

- Digital Hadronic
 CALorimeter (DHCAL):
 A steel or tungsten
 absorber between every
 layer
- DHCAL with minimal absorber: only absorber is from the cassettes
- Resistive Plate Chambers (RPCs)

MIN-DHCAL

- Three vertically located 32 x
 96 cm² RPCs → 96 x 96 cm² active area per layer
- 9216 | x | cm^2 readout pads
- Min-DHCAL: 50 cassettes spaced 2.54 cm apart
- 460,800 readout channels
- Recorded hit data: t, x, y, z

DATA SELECTION

 Data taken at Fermilab: Beams provide a mixture of positrons, pions 	Momentum (GeV)	#Events
and muons	I.	107000
Čerenkov	2	107000
counter Min DUCAL	3	62000
Beam Min-DHCAL	4	84000
	6	109000
Trigger counters	8	109000
	10	226000

SELECTION CUTS

Event Selection Cuts			
Timing			
Only one cluster in the 1 st layer			
>5 active layers			
Particle Selection Cuts			
Particles	cuts		
μ	$\check{C}=0$	No interaction layer	
π^+	$\check{C}=0$	Interaction layer	
e^+	$\check{C} \neq 0$	-	

PARTICLE IDENTIFICATION

- Muons: least hits
- Positrons: higher hit density due to dense electromagnetic showers
- Pions: large distribution (interact electromagnetically and hadronically, fluctuations in deposited energy)

PION EVENT DISPLAY

8

MUON EVENT DISPLAY

Min-DHCAL data

Monte Carlo data

9

POSITRON EVENT DISPLAY

Min-DHCAL data

In progress: Monte Carlo data

PION MEAN RESPONSE

- Power law fit: $N_{hit} = p_0 E_{beam}^{p_1}$
- Linear response: $p_1 = I$
- Limited granularity, only one hit is recorded \implies saturation of the response $p_1 < I$
- *p*₁=0.87 uncalibrated pion data

**preliminary MC data

CONCLUSION

- Min-DHCAL data can be used to validate current hadronic shower models
- Thanks to high granularity calorimeter better
 GEANT4 simulations
- Ongoing: complete calibration and get energy resolution responses

BACK UP

- RPCs avalanche mode: initialized by a charged particle ionizing the molecules in the gas gap. The free electrons accelerated by a high voltage applied across the chamber ionize more electrons on their way. Default high voltage is 6.3 kV.
- Min-DHCAL: cassette thickness = 12.5 mm → average of 0.41 radiation length (X₀) or 0.037 nuclear interaction lengths (λ_l). Each readout chip:
 1.4 mm plastic casing (~ 30 cm X₀ for plastic) → 1.4 mm plastic = 0.004 X₀ or ¹/₁₀₀th of one active layer.
- DHCAL thickness ~ 600 $\frac{g}{cm^2}$ with I cm steel absorber between every layer, min-DHCAL thickness ~ 210 $\frac{g}{cm^2}$,
- I GeV muon stops in 565 $\frac{g}{cm^2} \implies$ I GeV muon won't stop in the min-DHCAL

BACK UP

- "hit": a cell recording a particle passing through it
- Threshold of each readout cell = 180 fC (digital readout) → set to measure only passage of a particle in the gas gap
- Cells do not record any energy deposited measurements
- **Digital calorimetry**: estimated the energy of a full particle shower by counting the total number of hits recorded in an event