First Glimpses of the SuperCDMS High Voltage Detectors

Yan Liu | TRIUMF For the SuperCDMS Collaboration 05/28/2024

CAP 2024 @ London, ON

Dark Matter Properties

Discrepancy in galatic rotational curve

The Bullet cluster

Cosmic Microwave Background

Big Bang Nucleosynthesis

- Dark
- Stable
- Non-baryonic
- Not "hot"
- ~25% of the total universe mass

Dark Matter Mass

SuperCDMS as a Dark Matter Experiment

SuperCDMS SNOLAB is sensitive to various dark matter models across **10 orders of magnitude!**

SuperCDMS SNOLAB Experiment

- 2 km underground in Sudbury, Canada
- Tower (stacks of 6 detectors) mounted inside a cryostat, which is surrounded by shielding to minimize background
- Germanium and Silicon crystals cooled down to ~10 mK to be sensitive to minute dark matter signals

SuperCDMS SNOLAB Detector Technology

Athermal phonon detectors

- Only partial energy is measured • To first order decoupled from crystal heat capacity • Fast pulses compared to thermal measurement • Signal is position dependent • Al fins as phonon collectors which enable large

- coverage area

SuperCDMS SNOLAB Detector Technology

Two different detector configurations

- HV detectors -> low threshold
 - - to lower detection threshold
 - highest science reach

- iZIP detectors -> low background

 - higher dynamic range

- Luke effect can amplify phonon signals under E field

Luke phonon energy

ionization-based NR/ER background discrimination

radioactive background measurements

Cryogenic Underground TEst Facility

- -

-

Installing Tower into CUTE Fridge

A major milestone of the experiment:

A SuperCDMS SNOLAB High Voltage tower operated in an underground, low background environment.

SuperCDMS Tower is being installed at CUTE

Tower Testing at CUTE: Statistics

151 days covering 4 thermal cycles

Total data volume: 400 detector days

~2 month of calibration data

Channel Selection Z2			72
PAS1	PDS1	PAS2	PI
PBS1	PES1	PBS2	P
PCS1	PFS1	PCS2	PI

Waveform Tools	TimeDomain Fit TPU			
✓ Low Pass Filter	Phonon Normalization			
Cut: 10 单 [kHz]	○ Open Loop ○ Close Loop	Amps		

Display Se	tup -					
Event Ra	te:	1.5) [E	vt/s]		
Display %	_				_	
🔽 Auto	Ó	'	50		100	

~2 weeks of low background data

Example pulses from a Silicon detector operated at 100V

Tower Testing at CUTE: Ge Detector Calibration

10

Ge activation peaks in Tower 3 Detector 3 +/-25V (preliminary data quality cuts)

Tower Testing at CUTE: Si Detector Calibration

Ba calibration for Tower 3 Detector 2 at 0V (preliminary data quality cuts)

OLC SIONS

- Direct detection of dark matter is one of the most promising methods we 1. have to investigate BSM physics.
- 2. SuperCDMS SNOLAB is sensitive to a variety of dark matter models ranging over 10 orders of magnitude in dark matter mass.
- 3. SuperCDMS High Voltage tower at CUTE marks the first time these detectors are operated in an underground, low background environment.

Preliminary results indicate great potentials with these detectors, 4. enabling us to explore exciting science in the coming months and beyond.

