PRIMORDIAL MAGNETIC FIELDS IN BOUNCING COSMOLOGY

Emmanuel FRION
MAGNETIC FIELDS IN THE UNIVERSE

- Magnetic fields (MF) \(\sim 1 \mu G \) and coherence length \(\lambda \sim 1 \text{kpc} \) observed in galaxies and clusters.
- MF between \(0 < z \leq 2 \) have same strength: saturation mechanism \(\Rightarrow \) “seed” field enhanced and maintained (e.g. through dynamo).
- Origin: astrophysical processes (after recombination)?
 - primordial mechanisms (before recombination)?
- Primordial MF unaltered in voids \(\Rightarrow \) still “seed” MF. Indirect evidence only (but see Broderick et al. Astrophys. J. 752, 22).
INFLATIONARY MAGNETOGENESIS

PMF in the very early Universe?

• Maxwell electromagnetism (EM)

\[\mathcal{L}_{\text{Maxwell}} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \]

Conformally invariant: no EM fields during expansion.

• Way-out: break invariance through coupling (inflation, geometry, etc...).

\[\frac{1}{4} f(\phi) F_{\mu\nu} F^{\mu\nu}, \quad \frac{1}{4} R F_{\mu\nu} F^{\mu\nu} \]

Inflationary magnetogenesis provide...

- ...seed MF compatible with observations
- ...naturally large coherence scale

BUT!

- ...simple models produce weak MF (e.g. $f(\phi)$ or R)
- ...the EM energy density usually big \Rightarrow strong backreaction!
- ...alternative mechanisms exist :)

PMF in bouncing cosmology / Emmanuel FRION efrion@uwo.ca May 29, 2024
GR HAMILTONIAN (ADM FOLIATION)

\[H_T = \int d^3x \left(N\mathcal{H}_0 + N_i \mathcal{H}^i + \lambda P + \lambda^i P_i \right), \quad (2) \]

Constraints

\[
\mathcal{H}_0 = G_{ijkl} \Pi^i \Pi^{kl} - h^{1/3} R, \quad (3a)
\]

\[
\mathcal{H}^i = -2\Pi^{ij,j}. \quad (3b)
\]

DeWitt metric

\[
G_{ijkl} = \frac{1}{2} h^{-1/2} \left(h_{ik} h_{jl} + h_{ij} h_{lk} - h_{ij} h_{kl} \right). \quad (4)
\]
Only non-zero commutator: \[
\left[\hat{h}_{ij}(x), \hat{\pi}^{kl}(x') \right] = i\hbar \delta_{ij}^{kl} \delta^3(x - x')
\]

Possible representation:
\[
\hat{h}_{ij}(x) = h_{ij}(x) , \hat{\pi}^{ij}(x) = -ih \frac{\delta}{\delta h_{ij}(x)}
\]

Constraints

\[
\hat{\mathcal{H}}_0 \psi = 0 = \left(\hat{G}_{ijkl} \hat{\pi}^{ij} \hat{\pi}^{kl} - \hat{h}_{ij}^1 3 \hat{R} \right) \psi \implies G_{ijkl} \frac{\delta^2 \psi}{\delta h_{ij} \delta h_{kl}} + h_{ij}^1 3 \hat{R} \psi = 0 , (5)
\]

\[
\hat{\mathcal{H}}^i \psi = 0 = \left(\hat{\pi}^{ij} + 3 \hat{\Gamma}^i_{ab} \hat{\pi}^{ab} \right) \psi \implies \left(\frac{\delta \psi}{\delta h_{ij}} \right)_{;j} = 0 . (6)
\]
No solution (yet?) of $G_{ijkl} \frac{\delta^2 \psi}{\delta h^i_j \delta h^k_l} + h^{1/2} 3 \hat{R} \psi = 0$.

Approximation: keep only wavelength of the size of the Universe.

High degree of homogeneity in the observable Universe: a hint supporting this approximation?

Homogeneous and isotropic metric

$$ds^2 = -N^2(t)dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right]. \quad (7)$$
Spatially flat spacetime \((k = 0) + \) perfect fluid:

\[
H_T = \mathcal{N} \mathcal{H}_T = \mathcal{N} \left(- \frac{\Pi^2_a}{24a} + \frac{\Pi_T}{a^{3w}} \right) = 0
\]

with \(T\) a global time (unitary evolution)
Choose ordering before quantising constraint:

\[
\frac{N}{a^{3w}} \left(-\frac{1}{24} a^{\frac{3w-1}{2}} \Pi a^{\frac{3w-1}{2}} \Pi + \Pi_T \right) = 0 .
\] (8)

Physically interesting! After gauge choice \(N = a^{3w} \):

\[
\frac{1}{24} \left[a^{\frac{3w-1}{2}} \frac{\partial}{\partial a} \left(a^{\frac{3w-1}{2}} \frac{\partial}{\partial a} \right) \right] \psi(a, T) = i \frac{\partial \psi}{\partial T}(a, T) .
\] (9)

Covariant upon field redefinition.
WHEELER-DE WITT EQUATION

Time-reversed wavefunction evolution for a 1D free particle:

\[i \frac{\partial \Psi}{\partial T}(\chi, T) = \frac{1}{24} \frac{\partial^2 \Psi}{\partial \chi^2}(\chi, T), \quad \chi = -\frac{2}{3w-3} a^{\frac{3w-3}{2}} . \]

(10)

Choose normalised IC with arbitrary bounce timescale \(T_b \):

\[\Psi_{\text{init}}(\chi) = \left(\frac{8}{T_b \pi} \right)^{\frac{1}{4}} \exp\left(-\frac{\chi^2}{T_b} \right) , \]

(11)
WHEELER-DE WITT EQUATION

Normalised wavefunction of the Universe at all times

$$\psi(a, T) = \left(\frac{8 T_b}{\pi (T^2 + T_b^2)} \right)^{\frac{1}{4}} \exp \left(\frac{-4 T_b a^{3(1-w)}}{9 (T^2 + T_b^2) (1 - w)^2} \right) \times \exp \left\{ -i \left[\frac{4 T a^{3(1-w)}}{9 (T^2 + T_b^2) (1 - w)^2} + \frac{1}{2} \tan(\frac{T_b}{T}) - \frac{\pi}{4} \right] \right\} . \quad (12)$$

How to interpret the quantum mechanics of the Universe?
Guidance equation with $\Psi := \text{Re} e^{iS/\hbar}$:

$$\frac{da}{dT} = -\frac{a^{3w-1}}{12} \frac{\partial S}{\partial a}.$$ \hspace{1cm} (13)

Insert phase of wavefunction:

$$a(T) = a_0 \left[1 + \left(\frac{T}{T_0} \right)^2 \right]^{\frac{1}{3(1-w)}}.$$ \hspace{1cm} (14)

Non-singular, symmetrical bouncing cosmology
THE ELECTROMAGNETIC SECTOR

• Problem of time: choose dust \((w = 0)\) as clock \(\Rightarrow T = t\).

• Coupling EM / curvature (Frion et al. (2020))

\[
\mathcal{L}_{EM} = - \left(\frac{1}{4} + \frac{R}{m_*^2}\right) F_{\mu\nu} F^{\mu\nu}.
\]

(15)

Mass scale \(m_*\) to be determined by observations.

What is the physically interesting space of parameters?
Quantising EM in Coulomb gauge \((A_0 = 0\) and \(\partial_i A^i = 0\))

- Potential vector with \textit{a priori} two helicities \(\sigma\)

\[
\hat{A}_i(t, x) = \sum_{\sigma=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \left[\epsilon_{i,\sigma}(k) \hat{A}_{k,\sigma} A_{k,\sigma}(t) e^{ik \cdot x} + H.C. \right],
\]

No external charge + isotropy

\[
\ddot{A}_k + \left(\frac{\dot{a}}{a} + \frac{\dot{f}}{f} \right) A_k + \frac{k^2}{a^2} A_k = 0.
\]
EVOLUTION OF THE MODES

\(A_k \): magnetic field, \(\Pi_k \): electric field
Magnetic power spectrum $\mathcal{P}_B \propto k^6$. Very blue!
PARAMETER SPACE AT 1 MPC

Orange region: lower limit set by cosmic rays
Blue region: lower limit set by dynamo effect
Scalar field + exponential potential + Bohmian cosmology = Bouncing cosmology with dark energy (Bacalhau et al (2017))!

\[\hat{H} \Psi(\alpha, \phi) = 0 \Rightarrow \left[-\frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \phi^2} \right] \Psi(\alpha, \phi) = 0. \]

(18)

Current work \(\Rightarrow \) adding PMF to this model
Wave function (Gaussian superposition):

\[\Psi = \sigma \sqrt{\pi} \left\{ \exp \left[-\left(\frac{\alpha + \phi}{2} \right)^2 \right] \exp \left[id(\alpha + \phi) \right] + \exp \left[-\left(\frac{\alpha - \phi}{2} \right)^2 \right] \exp \left[-id(\alpha - \phi) \right] \right\}. \]

Guidance equations (\(\alpha = \log a \)):

\[\dot{\alpha} = -\frac{N}{l_p} e^{-3\alpha} \frac{\partial S}{\partial \alpha}, \quad \dot{\phi} = \frac{N}{l_p} e^{-3\alpha} \frac{\partial S}{\partial \phi} \]

(19)
Gaussian and Cauchy couplings:

\[
\begin{align*}
 f & \equiv \frac{1}{4} + B e^{-\frac{\phi^2}{\beta^2}}, \\
 f & \equiv \frac{1}{4} + \frac{B}{1 + (\phi/\beta)^2}
\end{align*}
\]

\[(21) \quad (22) \]

\[B, \beta: \text{free parameters} \]
PRELIMINARY RESULTS

\[\beta = 1.0e^{100}, \ \beta = 3.6e^{-4} \]
PRELIMINARY RESULTS

\[\beta = 1.0e^{100}, \quad \beta = 3.6e^{-4} \]