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Various cosmological scenarios have the universe trapped in a 
false vacuum, at least for certain epochs of its evolution.  The 
inflationary universe is explicitly dependent on the universe 
being in a false vacuum and then exponentially expanding for 
many e-foldings (which solves several major cosmological 
problems).  String-based cosmology yields a persistent de 
Sitter expanding universe that is generically meta-stable, 
presumably to the present day. The model’s 
phenomenological viability depends on the decay rate being 
sufficiently slow. 

Generally speaking the false vacuum can decay via tunnelling 
to the true vacuum, and this tunnelling is mediated by 
instantons which correspond to Euclidean trajectories where a 
bubble of true vacuum forms inside the false vacuum, grows 
to a maximum size and then bounces back to the false 
vacuum.    



False vacuum decay induced by 
topological solitons

• A topological soliton requires the vacuum manifold to 
be non-trivial. We imagine this occurs for the false 
vacuum, ie. at a local minimum of the potential.  A 
topologically non-trivial texture in the false vacuum 
manifold then generally requires that the field passes 
through a region where it must vanish.   

• If the true vacuum occurs at this point, one would 
imagine the region would grow without impediment. 

• This can be avoided in certain scenarios with thin-
walled topological solitons.



• Consider the Georgi-Glashow model, with 
’t Hooft Polyakov monopoles
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of vacuum decay has been rather elusive although the
ideas have been adequately explicated in [15–18]. More
recently, the relevance of the mechanism has been demon-
strated in specific examples, in [19] for the mediating sec-
tor of a hidden sector scenario of supersymmetry break-
ing and in [20] in a GUT model with O’Raifeartaigh
type direct supersymmetry breaking. In this paper we
explore a model that is amenable to an analytical treat-
ment within the techniques developed in [21]. In doing so
we provide a transparent model in which the generic ex-
pectations raised in [15–18] can be realised and a specific
formula can be derived.

We construct an SU(2) gauge model with a triplet
scalar field with two possible translationally invariant
vacua, one with SU(2) broken to U(1) and the other
with the original gauge symmetry intact. The former
phase permits the existence of monopoles. By appro-
priate choice of potential for the triplet it can be ar-
ranged that the phase of unbroken symmetry is lower
in energy and represents the true vacuum of the theory.
The monopoles interpolate between the true vacuum and
the false vacuum. For a wide range of the parameters,
these monopoles are in fact classically stable. In previ-
ous work [15, 16] the dissociation of such monopoles was
considered, varying the parameters of the theory to criti-
cal values where the monopoles were classically unstable
due to infinite dilation. This can occur for example in the
early Universe where the high temperature phase prefers
one vacuum in which the system starts, but with adia-
batic reduction in temperature, a di�erent phase becomes
more favorable. The Universe is then liable to simply roll
over, by classical evolution, to the true vacuum.

It was however, overlooked that these monopoles are
in fact unstable due to quantum tunneling well be-
fore the parameters reach their critical values. We
dub such monopoles false monopoles. Working in the
thin wall limit for the monopoles [15], we show that
such monopoles undergo quantum tunneling to larger
monopoles, which are then classically unstable by ex-
panding indefinitely, consequently converting all space
to the true vacuum, the phase of unbroken SU(2) sym-
metry. Further, the formula we derive also recovers the
regime of parameter space, within the thin wall monopole
limit, where no tunneling is required for the decay but
the monopole is simply classically unstable as previously
treated [15, 16].

The rest of the paper is organised as follows. In sec-
tion II we specify the model under consideration and
the monopole ansatz along with the equations of mo-
tion. In section III we delineate the conditions under
in which there should exist a metastable monopole so-
lution with a large radius and a thin wall. We find the
thin wall monopole solutions and also justify their exis-
tence. In section IV we use the thin wall approximation
which permits a treatment of the solution in terms of
a single collective coordinate, the radius R of the thin
wall. We argue that the monopole is unstable to tun-
neling to a new configuration of a much larger radius

and we determine the existence of the instanton for this
tunneling within the same thin wall approximation. In
section V we determine the Euclidean action for this in-
stanton, the so called bounce B which determines the
tunneling rate for the appearance of the large radius un-
stable monopole. In section VI we relate our findings
to a previous study of classical monopole instability in
supersymmetric GUT models. In section VII we discuss
our results and compare our tunneling rate formula with
that of the homogeneous bubble formation case without
monopoles. We show that in addition to our tunneling
rate being significantly faster, it also indicates a regime
in which the monopoles become unstable, hence showing
that the putative non-trivial vacuum indicated by the
e�ective potential is in fact unstable.

II. UNSTABLE MONOPOLES IN A FALSE
VACUUM

Consider an SU(2) gauge theory with a triplet scalar
field ⇧ with the Lagrangian density given by

L = �1
4
F a

µ�Fµ�a +
1
2
(Dµ⇧a)(Dµ⇧a)� V (⇧a⇧a) (1)

where

F a
µ� = ⌃µAa

� � ⌃�Aa
µ + e⇥abcAb

µAc
� , (2)

and

Dµ⇧a = ⌃µ⇧a + e⇥abcAb
µ⇧c. (3)

The potential we use is a polynomial of order 6 in ⇧ and
may conveniently be written as

V (⇧) = ⌅⇧2(⇧2 � a2)2 + �2⇧2 � ⇥ (4)

where ⇥ is defined so that the potential vanishes at the
meta-stable vacua. The vacuum energy density di�er-
ence is then equal to ⇥. Such a potential was numerically
analyzed by [22] as a toy model for the dissociation of
monopoles. Here we obtain explicit analytical formulae
for the quantum tunneling decay of the monopoles. The
potential has a minimum at ⇧T ⇧ = 0 which for � = 0
is degenerate with the manifold of vacua at ⇧T ⇧ = a2.
When we set � ⌅= 0, we get a manifold of degenerate
metastable vacua at ⇧T ⇧ = ⇤2 (where the exact value of
the VEV, ⇤, is calculable and satisfies ⇤ ⇥ a for small �),
and the minimum at ⇧ = 0 becomes the true vacuum. A
plot of the potential for small � as a function of one of
the components of ⇧ is shown in figure 1. A supersym-
metry breaking model [23] containing monopoles and a
scalar potential similar to the one given in Eqn. (4) was
studied in [20].

The manifold of vacua at ⇧T ⇧ = ⇤2 is topologi-
cally an S2 and as spatial infinity is topologically also
S2, the appropriate homotopy group of the manifold of
the vacua of the symmetry breaking SU(2) ⇤ U(1) is
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• The potential is taken to have the form 3

P
o
t
e
n
t
i
a
l
 
V
(
!)
 
-
-
>

"#

$−$
! "">

FIG. 1: The potential V (⌅) for � 6= 0 as a function of one of
the components of the field ⌅, shifted by an additive constant
so that ⌅ = ⇤ has vanishing V and the true vacuum has
V = �⇥.

�2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at ⌥ = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for
the monopole can be chosen in the usual way as

⌥a = r̂a h(r)

Aa
µ = ⇤µab r̂b

1�K(r)
er

A0 = 0 (5)

where r̂ is a unit vector in spherical polar coordinates
The energy of the monopole configuration in terms of
the functions h and K is

E(K, h) = 4⌃
⇧ ⇥

0
dr

⇤ (K �)2

e2
+

(1�K2)2

2e2r2
+

1
2
r2(h�)2

+ K2h2 + r2V (h)
⌅

(6)

where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
of this functional and the ansatz functions satisfy the
equations

h�� +
2
r
h� � 2h

r2
K2 � �V

�h
= 0 (7)

K �� � K

r2
(K2 � 1)� e2h2K = 0. (8)

As r ⌅ ⇧ the function h asymptotically approaches ⌅
and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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FIG. 2: The monopole profile under the thin wall approxima-
tion.

III. THIN WALLED MONOPOLES

When the di⇥erence between the false and true vacuum
energy densities ⇤ is small, the monopole can be treated
as a thin shell, the so called thin wall approximation.
Within this approximation, the monopole can be divided
into three regions as shown in figure 2. There is a region
of essentially true vacuum extending from r = 0 upto a
radius R. At r = R, there is a thin shell of thickness ⇥
in which the field value changes exponentially from the
true vacuum to the false vacuum. Outside this shell the
monopole is essentially in the false vacuum, and so we
have

h ⇤ 0 , K ⇤ 1 r < R� ⇥

2

h ⇤ ⌅ , K ⇤ 0 r > R +
⇥

2

0 < h < ⌅ , 0 < K < 1 R� ⇥

2
⇥ r ⇥ R +

⇥

2
(9)

where ⇥ is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).

We now proceed to elucidate the existence of monopole
solutions which have the thin wall behavior described in
the previous subsection. Redefining the couplings ap-
pearing in the potential (4) in terms of a mass scale µ
and expressing ⌥ in terms of the profile function h(r), we
have

V =
⇧̃

µ2
h2

�
h2 � µ2ã2

⇥2 + �̃2µ2h2 � ⇤ (10)



False Monopoles
• We can imagine soliton solutions to this 

theory which exist in the false vacuum:
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equations
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As r ⌅ ⇧ the function h asymptotically approaches ⌅
and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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III. THIN WALLED MONOPOLES

When the di⇥erence between the false and true vacuum
energy densities ⇤ is small, the monopole can be treated
as a thin shell, the so called thin wall approximation.
Within this approximation, the monopole can be divided
into three regions as shown in figure 2. There is a region
of essentially true vacuum extending from r = 0 upto a
radius R. At r = R, there is a thin shell of thickness ⇥
in which the field value changes exponentially from the
true vacuum to the false vacuum. Outside this shell the
monopole is essentially in the false vacuum, and so we
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where ⇥ is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).

We now proceed to elucidate the existence of monopole
solutions which have the thin wall behavior described in
the previous subsection. Redefining the couplings ap-
pearing in the potential (4) in terms of a mass scale µ
and expressing ⌥ in terms of the profile function h(r), we
have

V =
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�2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at ⌥ = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for
the monopole can be chosen in the usual way as

⌥a = r̂a h(r)

Aa
µ = ⇤µab r̂b

1�K(r)
er

A0 = 0 (5)

where r̂ is a unit vector in spherical polar coordinates
The energy of the monopole configuration in terms of
the functions h and K is
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where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
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As r ⌅ ⇧ the function h asymptotically approaches ⌅
and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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where ⇥ is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).

We now proceed to elucidate the existence of monopole
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�2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at ⌥ = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for
the monopole can be chosen in the usual way as

⌥a = r̂a h(r)
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er
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where r̂ is a unit vector in spherical polar coordinates
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the functions h and K is
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where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
of this functional and the ansatz functions satisfy the
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As r ⌅ ⇧ the function h asymptotically approaches ⌅
and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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where ⇥ is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).

We now proceed to elucidate the existence of monopole
solutions which have the thin wall behavior described in
the previous subsection. Redefining the couplings ap-
pearing in the potential (4) in terms of a mass scale µ
and expressing ⌥ in terms of the profile function h(r), we
have

V =
⇧̃

µ2
h2

�
h2 � µ2ã2
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�2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at ⌥ = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for
the monopole can be chosen in the usual way as

⌥a = r̂a h(r)

Aa
µ = ⇤µab r̂b

1�K(r)
er

A0 = 0 (5)

where r̂ is a unit vector in spherical polar coordinates
The energy of the monopole configuration in terms of
the functions h and K is
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where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
of this functional and the ansatz functions satisfy the
equations
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As r ⌅ ⇧ the function h asymptotically approaches ⌅
and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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When the di⇥erence between the false and true vacuum
energy densities ⇤ is small, the monopole can be treated
as a thin shell, the so called thin wall approximation.
Within this approximation, the monopole can be divided
into three regions as shown in figure 2. There is a region
of essentially true vacuum extending from r = 0 upto a
radius R. At r = R, there is a thin shell of thickness ⇥
in which the field value changes exponentially from the
true vacuum to the false vacuum. Outside this shell the
monopole is essentially in the false vacuum, and so we
have
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where ⇥ is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).

We now proceed to elucidate the existence of monopole
solutions which have the thin wall behavior described in
the previous subsection. Redefining the couplings ap-
pearing in the potential (4) in terms of a mass scale µ
and expressing ⌥ in terms of the profile function h(r), we
have

V =
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µ2
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�2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at ⌥ = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for
the monopole can be chosen in the usual way as

⌥a = r̂a h(r)

Aa
µ = ⇤µab r̂b

1�K(r)
er

A0 = 0 (5)

where r̂ is a unit vector in spherical polar coordinates
The energy of the monopole configuration in terms of
the functions h and K is
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where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
of this functional and the ansatz functions satisfy the
equations
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As r ⌅ ⇧ the function h asymptotically approaches ⌅
and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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of essentially true vacuum extending from r = 0 upto a
radius R. At r = R, there is a thin shell of thickness ⇥
in which the field value changes exponentially from the
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where ⇥ is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).

We now proceed to elucidate the existence of monopole
solutions which have the thin wall behavior described in
the previous subsection. Redefining the couplings ap-
pearing in the potential (4) in terms of a mass scale µ
and expressing ⌥ in terms of the profile function h(r), we
have
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⇧2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at � = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for
the monopole can be chosen in the usual way as

�a = r̂a h(r)

A
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er

A0 = 0 (5)

where r̂ is a unit vector in spherical polar coordinates
The energy of the monopole configuration in terms of
the functions h and K is
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where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
of this functional and the ansatz functions satisfy the
equations
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As r ! 1 the function h asymptotically approaches ⌘

and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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where � is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).
We now proceed to elucidate the existence of monopole
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ã
2
�2

+ �̃
2
µ
2
h
2 � ✏ (10)

3

P
o
t
e
n
t
i
a
l
 
V
(
φ)
 
-
-
>

-ε

η−η
φ -->

FIG. 1: The potential V (�) for � 6= 0 as a function of one of
the components of the field �, shifted by an additive constant
so that � = ⌘ has vanishing V and the true vacuum has
V = �✏.

⇧2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at � = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.
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where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
of this functional and the ansatz functions satisfy the
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and is zero at r = 0 from continuity requirements. On
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where � is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).
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2. Undershoot

To prove the undershoot we use the expression Eqn.
(18) which gives
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Integrating the second term by parts we obtain
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where we obtain the inequality using the fact that we are
only interested in the region h  ⌘.

We now prove that this contribution to the energy can-
not be su�cient push h to h > ⌘. We take r0 to be the
value of r as described after Eqn. (19), where the en-
ergy becomes negative within the linearised regime with
kr0 � 1. We now assume there exists a value rf ⌘ r⌘

for which h(r⌘) = ⌘. Then
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which is an upper bound to the energy that can be added
to the particle. But now it is easy to see that this is
insu�cient for kr0 large enough. Indeed the energy of
the particle at r = r0 is obtained, via the linear regime,
by Eqn. (21)

E ⇡ ✏� k
2
C

2
e
2kr

4(kr)3
! ✏� k

h
2(r0)

r0
. (38)

This expression is negative. Furthermore, if kr0 is large
enough, we will see that �E cannot provide enough en-
ergy to increase E to zero, giving a contradiction to the
existence of r⌘. To see this, we would require |E| > �E

ie.

k
h
2(r0)
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⌘
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2(r0)
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. (39)

The linear approximation assumes h(r0) ⌧ ⌘, hence we
get
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r0
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2

r20

> ✏ (40)

reorganizing the terms, which for small enough ✏ simply
implies

h
2(r0)kr0 > ⌘

2
. (41)

Thus we get the the inequality sandwich

⌘
2

kr0
< h

2(r0) < ⌘
2
. (42)

Using h(r0) ⇡ Ce
kr0/2kr0 we can choose

C =
⌘2kr0
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1/4
0

(43)

which gives

⌘
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<

⌘
2

p
kr0

< ⌘
2
. (44)

It is obvious that for large enough kr0 this is easily satis-
fied. Thus we have established the existence of a choice
of C or initial velocity which contradicts the existence of
r⌘.

IV. COLLECTIVE COORDINATE AND THE
INSTANTONS

The potential V (�) given in (4) can be normalized so
that the energy density of the metastable vacuum is van-
ishing whereas the energy density of the true vacuum is
�✏. By making use of the thin-wall approximation, the
expression for the total energy in the static case given in
(6) can be expressed as

E = 4⇡
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2
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2
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2
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V (h)
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. (45)

In the above expression, we have made use of the fact that
V (h) is zero for r > R+ �

2 , K = 1 for r < R� �
2 , K = 0

for r > R+ �
2 , and that both the derivative terms and the

term K
2
h
2 are non-zero only when R � �

2 < r < R + �
2 .

Since � is small, the first integral on the right hand side
of (45) gives �↵R

3 where ↵ = 4⇡✏/3 because V (h) = �✏

in the domain of integration. The second integral gives
C/R where C = 2⇡/e2. The third integral is due to the
energy of the wall and can be written as 4⇡�R2 where �

is the surface energy density of the wall given by
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1

R2

Z R+ �
2

R� �
2

dr

⇣ (K 0)2

e2
+

(1�K
2)2

2e2r2

+
1

2
r
2(h0)2 +K

2
h
2 + r

2
V (h)

⌘
. (46)

We can thus write the total energy of the monopole as

E(R) = �↵R
3 + 4⇡�R2 +

C

R
. (47)
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2. Undershoot

To prove the undershoot we use the expression Eqn.
(18) which gives

�E = �2
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Integrating the second term by parts we obtain
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where we obtain the inequality using the fact that we are
only interested in the region h ⇤ ⌅.

We now prove that this contribution to the energy can-
not be su⇥cient push h to h > ⌅. We take r0 to be the
value of r as described after Eqn. (19), where the en-
ergy becomes negative within the linearised regime with
kr0 ⌃ 1. We now assume there exists a value rf ⇥ r⇥

for which h(r⇥) = ⌅. Then
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which is an upper bound to the energy that can be added
to the particle. But now it is easy to see that this is
insu⇥cient for kr0 large enough. Indeed the energy of
the particle at r = r0 is obtained, via the linear regime,
by Eqn. (21)
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. (38)

This expression is negative. Furthermore, if kr0 is large
enough, we will see that �E cannot provide enough en-
ergy to increase E to zero, giving a contradiction to the
existence of r⇥. To see this, we would require |E| > �E
ie.

k
h2(r0)

r0
� ⇤ >

⌅2 � h2(r0)
r2
0
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The linear approximation assumes h(r0) ⇧ ⌅, hence we
get
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reorganizing the terms, which for small enough ⇤ simply
implies

h2(r0)kr0 > ⌅2. (41)

Thus we get the the inequality sandwich
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(43)

which gives
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It is obvious that for large enough kr0 this is easily satis-
fied. Thus we have established the existence of a choice
of C or initial velocity which contradicts the existence of
r⇥.

IV. COLLECTIVE COORDINATE AND THE
INSTANTONS

The potential V (⌥) given in (4) can be normalized so
that the energy density of the metastable vacuum is van-
ishing whereas the energy density of the true vacuum is
�⇤. By making use of the thin-wall approximation, the
expression for the total energy in the static case given in
(6) can be expressed as

E = 4⇧
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In the above expression, we have made use of the fact that
V (h) is zero for r > R + �

2 , K = 1 for r < R� �
2 , K = 0

for r > R+ �
2 , and that both the derivative terms and the

term K2h2 are non-zero only when R � �
2 < r < R + �

2 .
Since ⇥ is small, the first integral on the right hand side
of (45) gives ��R3 where � = 4⇧⇤/3 because V (h) = �⇤
in the domain of integration. The second integral gives
C/R where C = 2⇧/e2. The third integral is due to the
energy of the wall and can be written as 4⇧⌃R2 where ⌃
is the surface energy density of the wall given by
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We can thus write the total energy of the monopole as

E(R) = ��R3 + 4⇧⌃R2 +
C

R
. (47)
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To prove the undershoot we use the expression Eqn.
(18) which gives
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where we obtain the inequality using the fact that we are
only interested in the region h ⇤ ⌅.

We now prove that this contribution to the energy can-
not be su⇥cient push h to h > ⌅. We take r0 to be the
value of r as described after Eqn. (19), where the en-
ergy becomes negative within the linearised regime with
kr0 ⌃ 1. We now assume there exists a value rf ⇥ r⇥

for which h(r⇥) = ⌅. Then
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which is an upper bound to the energy that can be added
to the particle. But now it is easy to see that this is
insu⇥cient for kr0 large enough. Indeed the energy of
the particle at r = r0 is obtained, via the linear regime,
by Eqn. (21)
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. (38)

This expression is negative. Furthermore, if kr0 is large
enough, we will see that �E cannot provide enough en-
ergy to increase E to zero, giving a contradiction to the
existence of r⇥. To see this, we would require |E| > �E
ie.

k
h2(r0)

r0
� ⇤ >
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0

. (39)

The linear approximation assumes h(r0) ⇧ ⌅, hence we
get

kh2(r0)
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0

> ⇤ (40)

reorganizing the terms, which for small enough ⇤ simply
implies

h2(r0)kr0 > ⌅2. (41)

Thus we get the the inequality sandwich
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< h2(r0) < ⌅2. (42)

Using h(r0) ⌅ Cekr0/2kr0 we can choose

C =
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(43)

which gives
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<
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< ⌅2. (44)

It is obvious that for large enough kr0 this is easily satis-
fied. Thus we have established the existence of a choice
of C or initial velocity which contradicts the existence of
r⇥.

IV. COLLECTIVE COORDINATE AND THE
INSTANTONS

The potential V (⌥) given in (4) can be normalized so
that the energy density of the metastable vacuum is van-
ishing whereas the energy density of the true vacuum is
�⇤. By making use of the thin-wall approximation, the
expression for the total energy in the static case given in
(6) can be expressed as

E = 4⇧
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0
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In the above expression, we have made use of the fact that
V (h) is zero for r > R + �

2 , K = 1 for r < R� �
2 , K = 0

for r > R+ �
2 , and that both the derivative terms and the

term K2h2 are non-zero only when R � �
2 < r < R + �

2 .
Since ⇥ is small, the first integral on the right hand side
of (45) gives ��R3 where � = 4⇧⇤/3 because V (h) = �⇤
in the domain of integration. The second integral gives
C/R where C = 2⇧/e2. The third integral is due to the
energy of the wall and can be written as 4⇧⌃R2 where ⌃
is the surface energy density of the wall given by
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We can thus write the total energy of the monopole as

E(R) = ��R3 + 4⇧⌃R2 +
C

R
. (47)

6

2. Undershoot

To prove the undershoot we use the expression Eqn.
(18) which gives
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where we obtain the inequality using the fact that we are
only interested in the region h ⇤ ⌅.

We now prove that this contribution to the energy can-
not be su⇥cient push h to h > ⌅. We take r0 to be the
value of r as described after Eqn. (19), where the en-
ergy becomes negative within the linearised regime with
kr0 ⌃ 1. We now assume there exists a value rf ⇥ r⇥

for which h(r⇥) = ⌅. Then
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which is an upper bound to the energy that can be added
to the particle. But now it is easy to see that this is
insu⇥cient for kr0 large enough. Indeed the energy of
the particle at r = r0 is obtained, via the linear regime,
by Eqn. (21)
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This expression is negative. Furthermore, if kr0 is large
enough, we will see that �E cannot provide enough en-
ergy to increase E to zero, giving a contradiction to the
existence of r⇥. To see this, we would require |E| > �E
ie.
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The linear approximation assumes h(r0) ⇧ ⌅, hence we
get
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reorganizing the terms, which for small enough ⇤ simply
implies

h2(r0)kr0 > ⌅2. (41)

Thus we get the the inequality sandwich
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which gives
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It is obvious that for large enough kr0 this is easily satis-
fied. Thus we have established the existence of a choice
of C or initial velocity which contradicts the existence of
r⇥.

IV. COLLECTIVE COORDINATE AND THE
INSTANTONS

The potential V (⌥) given in (4) can be normalized so
that the energy density of the metastable vacuum is van-
ishing whereas the energy density of the true vacuum is
�⇤. By making use of the thin-wall approximation, the
expression for the total energy in the static case given in
(6) can be expressed as
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In the above expression, we have made use of the fact that
V (h) is zero for r > R + �

2 , K = 1 for r < R� �
2 , K = 0

for r > R+ �
2 , and that both the derivative terms and the

term K2h2 are non-zero only when R � �
2 < r < R + �

2 .
Since ⇥ is small, the first integral on the right hand side
of (45) gives ��R3 where � = 4⇧⇤/3 because V (h) = �⇤
in the domain of integration. The second integral gives
C/R where C = 2⇧/e2. The third integral is due to the
energy of the wall and can be written as 4⇧⌃R2 where ⌃
is the surface energy density of the wall given by
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We can thus write the total energy of the monopole as

E(R) = ��R3 + 4⇧⌃R2 +
C

R
. (47)
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To prove the undershoot we use the expression Eqn.
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where we obtain the inequality using the fact that we are
only interested in the region h ⇤ ⌅.

We now prove that this contribution to the energy can-
not be su⇥cient push h to h > ⌅. We take r0 to be the
value of r as described after Eqn. (19), where the en-
ergy becomes negative within the linearised regime with
kr0 ⌃ 1. We now assume there exists a value rf ⇥ r⇥
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which is an upper bound to the energy that can be added
to the particle. But now it is easy to see that this is
insu⇥cient for kr0 large enough. Indeed the energy of
the particle at r = r0 is obtained, via the linear regime,
by Eqn. (21)
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. (38)

This expression is negative. Furthermore, if kr0 is large
enough, we will see that �E cannot provide enough en-
ergy to increase E to zero, giving a contradiction to the
existence of r⇥. To see this, we would require |E| > �E
ie.

k
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. (39)

The linear approximation assumes h(r0) ⇧ ⌅, hence we
get
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reorganizing the terms, which for small enough ⇤ simply
implies

h2(r0)kr0 > ⌅2. (41)
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which gives
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It is obvious that for large enough kr0 this is easily satis-
fied. Thus we have established the existence of a choice
of C or initial velocity which contradicts the existence of
r⇥.

IV. COLLECTIVE COORDINATE AND THE
INSTANTONS

The potential V (⌥) given in (4) can be normalized so
that the energy density of the metastable vacuum is van-
ishing whereas the energy density of the true vacuum is
�⇤. By making use of the thin-wall approximation, the
expression for the total energy in the static case given in
(6) can be expressed as
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In the above expression, we have made use of the fact that
V (h) is zero for r > R + �

2 , K = 1 for r < R� �
2 , K = 0

for r > R+ �
2 , and that both the derivative terms and the

term K2h2 are non-zero only when R � �
2 < r < R + �

2 .
Since ⇥ is small, the first integral on the right hand side
of (45) gives ��R3 where � = 4⇧⇤/3 because V (h) = �⇤
in the domain of integration. The second integral gives
C/R where C = 2⇧/e2. The third integral is due to the
energy of the wall and can be written as 4⇧⌃R2 where ⌃
is the surface energy density of the wall given by

⌃ =
1

R2

� R+ �
2

R� �
2

dr
⇥ (K ⇥)2

e2
+

(1�K2)2

2e2r2

+
1
2
r2(h⇥)2 + K2h2 + r2V (h)

⇤
. (46)

We can thus write the total energy of the monopole as

E(R) = ��R3 + 4⇧⌃R2 +
C

R
. (47)



Graph of the energy
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This function is plotted in figure 4. There is a minimum
at R = R1 and this corresponds to the classically stable
monopole solution. This solution has a bubble of true
vacuum in its core and the radius R1 of this bubble is
obtained by solving dE/dR = 0. However, this monopole
configuration can tunnel quantum mechanically through
the finite barrier into a configuration with R = R2 where
E(R1) = E(R2). Once this occurs, the monopole can
continue to lose energy through an expansion of the core
since the barrier which was present at R1 is no longer
able to prevent this.

E
N
E
R
G
Y
 
-
-
>

RADIUS OF BUBBLE -->

R1 R2

Instanton Tunneling

FIG. 4: The function E(R) plotted versus bubble radius. The
classically stable monopole solution has R = R1. This solu-
tion can tunnel quantum mechanically to a configuration with
R = R2 and then expand classically.

We now proceed to determine the action of the instan-
ton describing the tunneling from R = R1 to R = R2. In
the thin wall approximation, the functions h and K can
be written as

h = h(r �R)
K = K(r �R) (48)

and the exact forms of the functions h and K will not be
required in the ensuing analysis. The only requirement
is that both h and K change exponentially when their
argument (r�R) is small. An example of a function with
this type of behaviour is the hyperbolic tangent function.
The time derivative of ⌅ can be written as

⌅̇a = r̂a
dh

dR
Ṙ. (49)

From (48), since (dh/dR)2 = (dh/dr)2, we have

1
2
⌅̇a⌅̇a =

1
2

⇤
dh

dR

⌅2

Ṙ2 =
1
2

⇤
dh

dr

⌅2

Ṙ2. (50)

Similarly,

Ȧa
µ = �µabr̂b

⇤
�1
er

⌅
dK

dR
Ṙ (51)

and

1
4
Ȧa

µȦa
µ =

1
2e2r2

⇤
dK

dr

⌅2

Ṙ2. (52)

The Lagrangian can then be expressed as

L = 2⇥

⇧ ⇤

0

�
r2

⇤
dh

dr

⌅2

Ṙ2 +
1
e2

⇤
dK

dr

⌅2

Ṙ2
⇥
dr � E(R).

(53)
From (8), for large r, the equation of motion of h can be
written as

h⇥⇥ � ⇧V (h)
⇧h

= 0. (54)

Multiplying both sides by h⇥ and integrating by parts
with respect to r, one obtains

h⇥ =
⌃

2V (h). (55)

Furthermore, since dh/dr is non-vanishing only in the
thin-wall, the value of r in the first integral in (53) can
be replaced by R and we have

⇧ ⇤

0
dr r2

⇤
dh

dr

⌅2

Ṙ2 = R2Ṙ2

⇧ ⇤

0
dr

⇤
dh

dr

⌅ ⌃
2V (h)

= R2Ṙ2S1 (56)

where

S1 =
⇧ �

0
dh

⌃
2V (h). (57)

Defining

S2 =
1
e2

⇧ ⇤

0
dr

⇤
dK

dr

⌅2

, (58)

the Lagrangian (53) becomes

L = 2⇥Ṙ2(S1R
2 + S2)� E(R) (59)

and the action can be written as

S =
⇧ ⇤

�⇤
dt

�
2⇥Ṙ2(S1R

2 + S2)� E(R)
⇥
. (60)

In Euclidean space, the expression for the action becomes

SE =
⇧ ⇤

�⇤
d⇤

�
2⇥Ṙ2(S1R

2 + S2) + E(R)
⇥

(61)

where ⇤ = it is the Euclidean time and Ṙ is the derivative
with respect to ⇤ . The instanton solution R(⇤) which we
are seeking obeys the boundary conditions R = R1 for
⇤ = ±⇥, R = R2 for ⇤ = 0, and dR/d⇤ = 0 for ⇤ = 0.
It can be obtained by solving the equations of motion
derived from (61). However, the exact form for R(⇤)
will not be of interest here since the decay rate of the
monopole is determined ultimately from SE [13]. The
calculation of SE will be the subject of the next section.



Technical Details
• We tried to prove the existence of the thin 

wall monopoles solutions using the classic 
analysis of Coleman for thin wall bubbles. 

• Indeed, our monopoles are simply 
magnetically charged, thin wall bubbles. 

• The equations of motion are:
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FIG. 1: The potential V (⌅) for � 6= 0 as a function of one of
the components of the field ⌅, shifted by an additive constant
so that ⌅ = ⇤ has vanishing V and the true vacuum has
V = �⇥.

�2(SU(2)/U(1)) which is Z. This suggests the existence
of topologically non-trivial solutions of the monopole
type which are classically stable. The presence of the
global minimum at ⌥ = 0 allows for the possibility that
the monopole solution although topologically non-trivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for
the monopole can be chosen in the usual way as

⌥a = r̂a h(r)

Aa
µ = ⇤µab r̂b

1�K(r)
er

A0 = 0 (5)

where r̂ is a unit vector in spherical polar coordinates
The energy of the monopole configuration in terms of
the functions h and K is

E(K, h) = 4⌃
⇧ ⇥

0
dr

⇤ (K �)2

e2
+

(1�K2)2

2e2r2
+

1
2
r2(h�)2

+ K2h2 + r2V (h)
⌅

(6)

where derivatives with respect to r are denoted by
primes. The static monopole solution is the minimum
of this functional and the ansatz functions satisfy the
equations

h�� +
2
r
h� � 2h

r2
K2 � �V

�h
= 0 (7)

K �� � K

r2
(K2 � 1)� e2h2K = 0. (8)

As r ⌅ ⇧ the function h asymptotically approaches ⌅
and is zero at r = 0 from continuity requirements. On
the other hand, K approaches zero at spatial infinity so
that the gauge field decreases as 1/r, and K = 1 at r = 0.
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FIG. 2: The monopole profile under the thin wall approxima-
tion.

III. THIN WALLED MONOPOLES

When the di⇥erence between the false and true vacuum
energy densities ⇤ is small, the monopole can be treated
as a thin shell, the so called thin wall approximation.
Within this approximation, the monopole can be divided
into three regions as shown in figure 2. There is a region
of essentially true vacuum extending from r = 0 upto a
radius R. At r = R, there is a thin shell of thickness ⇥
in which the field value changes exponentially from the
true vacuum to the false vacuum. Outside this shell the
monopole is essentially in the false vacuum, and so we
have

h ⇤ 0 , K ⇤ 1 r < R� ⇥

2

h ⇤ ⌅ , K ⇤ 0 r > R +
⇥

2

0 < h < ⌅ , 0 < K < 1 R� ⇥

2
⇥ r ⇥ R +

⇥

2
(9)

where ⇥ is a length corresponding to the mass scale of
the symmetry breaking. As we shall see in section IV,
describing the monopole in this way allows us to study
the dynamics in terms of just one collective coordinate
R. The energy of the monopole then becomes a simple
polynomial in R. Furthermore, due to the spherical sym-
metry, R is a function of time alone and so the original
field theoretic model in 3 + 1 dimensions reduces to a
one-dimensional problem involving R(t).

We now proceed to elucidate the existence of monopole
solutions which have the thin wall behavior described in
the previous subsection. Redefining the couplings ap-
pearing in the potential (4) in terms of a mass scale µ
and expressing ⌥ in terms of the profile function h(r), we
have

V =
⇧̃

µ2
h2

�
h2 � µ2ã2

⇥2 + �̃2µ2h2 � ⇤ (10)



• We assumed that we can take K(r)=1 in the 
equation for h(r).  For large r obviously the 
terms involving K(r) have r in the 
denominator and are negligible, while for 
small r  the approximation K(r)=1 is simply 
valid.  Not true! 

• The assumption was that K(r) does not 
greatly affect the behaviour of h, however 
h(r) has a great effect on K(r). Not true! 

• Indeed, as h(r) increases to its (false) 
vacuum value at large r, while K(r) is forced 
to vanish by its equation. Sort of true!



Numerical solution 
• We find numerically that the potential chosen 

does not give thin wall monopoles.   
• We had to modify the potential to the following: 

• which has the graph:
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FIG. 1: Inverted potential of Eqn.(1) for the scalar field at
generic values of the parameters.

vanishing value independently of the value of the h field.
Furthermore, it was found that even though we can make
the initial potential as flat as we like near h = 0, it still
does not give rise to a thin wall solution. The h field
simply starts to move up to its asymptotic value h = ⌘
from r ⇡ 0. The reason for this behaviour has to do with
the impulse term 2h

r2 K
2 which pushes the h field along

immediately at r = 0. Therefore, the idea of obtaining
a thin wall monopole with the potential Eqn.(1) was not
correct. The content of this paper is to show how to
modify the potential in order to obtain a thin-wall, false
monopole solution.

III. MODIFIED POTENTIAL

The potential can be modified in an infinite number
of ways, as we are not concerned with renormalizability.
We are primarily motivated by the desire to exhibit a po-
tential for which the false monopoles will present them-
selves as thin-wall monopoles. However, we find that the
modifications are justified with respect to current models
of cosmology. Our modification will give rise to a false
vacuum that is not only classically stable, but also com-
prises of a very wide flat region. Such false vacua with
wide flat regions have been considered in many viable
cosmological models. For example, the KKLT solution
for a cosmology coming from string theory, [15] obtains
that the present universe is actually in a false vacuum
phase where the very wide flat aspect of the potential
gives that the tunnelling probability to the true vacuum
is much longer than the present age of the universe. In
supersymmetric models, the existence of flat directions
is generic and required, [16]. However, non-perturbative
effects and supersymmetry breaking can slightly lift de-
generacies of supersymmetric vacua, giving rise to just
the kind of very flat vacua that we will be modelling. In

the inflationary cosmology scenario, the notion of slow-
roll inflation requires a false vacuum to be very flat such
that the scalar field slowly rolls down a potential rather
than tunnelling out of it, [17, 18]. Inflation occurs if the
roll is slow compared to the expansion of the universe.
However, eventually, the roll speeds up, arrests the infla-
tionary phase and gives rise to particle creation. Hence
these scenarios all require a very flat false vacuum, the
kind of false vacuum that we will be studying. Indeed,
if the disintegration of the false vacuum that we are in-
vestigating is in fact relevant in cosmological scenarios
where the universe is in a false vacuum for an appreciable
amount of time, it would require serious readjustments
of those scenarios that rely on a long period in which the
universe is trapped in such a false vacuum.

The potential that we use should simply be thought
of as an effective potential. The potential should have
an absolute minimum at h = 0 and additionally a local
minimum (false vacuum) at h = a, the energy density
difference between the minima should be an adjustable
parameter. The energy density of the false vacuum is
normalized to zero. We consider the following form for
the potential,

V (h) = �
⇣
(h2 � a2)2(h2 � ✏

1
2n+1

a4
)
⌘2n+1

, (6)

as shown in Fig(2). The potential is symmetric under

FIG. 2: Potential for the scalar field with n = 1, a = 1.43,
� = 0.1 and ✏ = .4

h ! �h however we are only interested in the range

h � 0. Here, the potential has two roots at hi =

q
✏

1
2n+1

a2

and at h = a.
For ✏

1
2n+1 < a6 the potential rises up from ��✏ at

h = 0 to an inflection point (and root) at hi followed by
a maximum at h̄ and then followed by a local minimum
(and root) at h = a. Afterwards, it rises up to +1. This
is depicted in Fig.(2). However, the three critical points
can exchange their order.
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FIG. 1: Inverted potential of Eqn.(1) for the scalar field at
generic values of the parameters.

vanishing value independently of the value of the h field.
Furthermore, it was found that even though we can make
the initial potential as flat as we like near h = 0, it still
does not give rise to a thin wall solution. The h field
simply starts to move up to its asymptotic value h = ⌘
from r ⇡ 0. The reason for this behaviour has to do with
the impulse term 2h

r2 K
2 which pushes the h field along

immediately at r = 0. Therefore, the idea of obtaining
a thin wall monopole with the potential Eqn.(1) was not
correct. The content of this paper is to show how to
modify the potential in order to obtain a thin-wall, false
monopole solution.

III. MODIFIED POTENTIAL

The potential can be modified in an infinite number
of ways, as we are not concerned with renormalizability.
We are primarily motivated by the desire to exhibit a po-
tential for which the false monopoles will present them-
selves as thin-wall monopoles. However, we find that the
modifications are justified with respect to current models
of cosmology. Our modification will give rise to a false
vacuum that is not only classically stable, but also com-
prises of a very wide flat region. Such false vacua with
wide flat regions have been considered in many viable
cosmological models. For example, the KKLT solution
for a cosmology coming from string theory, [15] obtains
that the present universe is actually in a false vacuum
phase where the very wide flat aspect of the potential
gives that the tunnelling probability to the true vacuum
is much longer than the present age of the universe. In
supersymmetric models, the existence of flat directions
is generic and required, [16]. However, non-perturbative
effects and supersymmetry breaking can slightly lift de-
generacies of supersymmetric vacua, giving rise to just
the kind of very flat vacua that we will be modelling. In

the inflationary cosmology scenario, the notion of slow-
roll inflation requires a false vacuum to be very flat such
that the scalar field slowly rolls down a potential rather
than tunnelling out of it, [17, 18]. Inflation occurs if the
roll is slow compared to the expansion of the universe.
However, eventually, the roll speeds up, arrests the infla-
tionary phase and gives rise to particle creation. Hence
these scenarios all require a very flat false vacuum, the
kind of false vacuum that we will be studying. Indeed,
if the disintegration of the false vacuum that we are in-
vestigating is in fact relevant in cosmological scenarios
where the universe is in a false vacuum for an appreciable
amount of time, it would require serious readjustments
of those scenarios that rely on a long period in which the
universe is trapped in such a false vacuum.

The potential that we use should simply be thought
of as an effective potential. The potential should have
an absolute minimum at h = 0 and additionally a local
minimum (false vacuum) at h = a, the energy density
difference between the minima should be an adjustable
parameter. The energy density of the false vacuum is
normalized to zero. We consider the following form for
the potential,

V (h) = �
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h ! �h however we are only interested in the range

h � 0. Here, the potential has two roots at hi =

q
✏

1
2n+1
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and at h = a.
For ✏

1
2n+1 < a6 the potential rises up from ��✏ at

h = 0 to an inflection point (and root) at hi followed by
a maximum at h̄ and then followed by a local minimum
(and root) at h = a. Afterwards, it rises up to +1. This
is depicted in Fig.(2). However, the three critical points
can exchange their order.



Graph of the potential for different 
values of the parameters
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FIG. 8: The log of the magnetic energy density squared and
its derivative (by ln r) for ✏ = 15 and for � = 0.1, a = 1.4 and
and n = 4.

FIG. 9: The covariant derivative energy density for ✏ = 15
and for � = 0.1, a = 1.4 and and n = 4.

FIG. 10: The derivative by ln r of the log of the covariant
derivative energy density squared for ✏ = 15 and for � = 0.1,
a = 1.4 and and n = 4.

a = 1.4 and n = 4 giving ✏̄ = 1.26 < 7.53 = a6 and
for ✏ = 800, � = 0.1 a = 1.4 and n = 4 giving ✏̄ =
2.1 < 7.53 = a6. Fig.(11) gives the monopole profiles of

FIG. 11: Multiple solutions for h andK for various values of
✏ and for � = 0.1, a = 1.4 and and n = 4.

h and K for 6 different values of ✏ and fixed values of
� = 0.1, a = 1.4 and n = 4. It could be clarifying to see
the potential explicitly that gives rise to the thin-walled
monopoles. Here, in Figs. (12,13) we give the graph
of the potential for the two extreme values, ✏ = 8 and
✏ = 800.

FIG. 12: Graph of the potential (including a zoom around
r = 1), for ✏ = 8, � = 0.1, a = 1.4 and n = 4.

V. CONCLUSIONS

We will make several observations. First, the idea
that ✏ should be small is not the appropriate criterion,
it seems. Indeed, we get thin-wall type solutions as we
take ✏ quite large, as can be seen in Fig.(11), although
we always remain in the region ✏̄ < a6. Second, the
thin-wall nature of the solution is quite different than in
the case of thin-wall instantons that give rise to vacuum
bubbles [11]. With the vacuum bubbles, the interior of
the bubble was a quiescent true vacuum. In our case,
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For ✏
1

2n+1 > a6 we get the order interchanged. This is
depicted in Fig.(3). We are not interested in a potential
with this behaviour, therefore we will restrict ourselves
to the region ✏

1
2n+1 < a6.

FIG. 3: Potential for the scalar field with n = 1, a = .82,
� = 1 and ✏ = 1.5

In order to confirm the described behaviour of the po-
tential, we first compute its derivative. Writing ✏̄ = ✏

1
2n+1

we have

V 0(h) = �(2n+ 1)
⇣
(h2 � a2)2(h2 � ✏̄

a4
)
⌘2n

⇥
�
(2(h2 � a2)(h2 � ✏̄

a4
) + (h2 � a2)2)

�
2h

= �(2n+ 1)(h2 � a2)4n+1(h2 � ✏̄

a4
)2n

⇥
�
3h2 � (

2✏̄

a4
+ a2)

�
2h (7)

and one can read off the critical points V 0(h) = 0 at
0, hi =

p
✏̄/a2, h̄ =

p
(2✏̄/a4 + a2)/3 and a.

1. The global minimum at h = 0 is simple with V (0) =
��✏ and clearly V 00(0) = �(2n + 1)a2✏̄2n(2✏̄/a4 +
a2) > 0.

2. The critical point at hi is an inflection point and a
root of order 2n+ 1. We find

V 2n+1(hi) = �(2n+ 1)!(h2
i � a2)4n+2(2hi)

2n+1

which gives the leading contribution in the Taylor
expansion of the potential as ⇠ (h� hi)2n+1. This
is an odd power h�hi changing sign on either side
of hi, implying an inflection point.

3. The critical point at h̄ is a simple local maxi-
mum. We find V 00(h̄) by differentiating the term
3h2 � ( 2✏̄a4 + a2) in V 0(h) and setting h = h̄ after-
wards. The contributions from differentiating the

other terms of course vanish as the term vanishing
at h = h̄ is intact. Thus we find

V 00(h̄) = ��(2n+ 1)24n+1((a2 � ✏̄/a4)/3)6n+112h̄.

We observe that the sign of the first factor changes
from positive to negative as ✏̄ passes from below a6

to above as the power 6n + 1 is odd. The other
factors do not change sign. Hence for ✏̄ < a6, the
region that we are interested in, we have V 00(h̄) < 0
i.e. a maximum at h̄.

4. The critical point at h = a is also a 4n + 2 order
root, i.e. V (h) ⇠ (h � a)(4n+2) with first non-
vanishing derivative is of even order, V (4n+2)(a) 6=
0. Differentiating V (h), 4n+2 times and then eval-
uating at h = a only gives a non-vanishing contri-
bution when the derivative acts on the h�a factor.
We easily find V 4n+2(a) = �(4n+2)!(2a)4n+2(a2�
✏̄/a4)2n+1 which, if ✏̄ < a6, is positive signifying a
local minimum.

IV. NUMERICAL RESULTS

The equations of motion Eqns.(4) and (5) correspond
to dynamics in minus the potential, and as if r is the time.
We have experimented with various values of ✏, a and
n. We are able to find thin-wall type (false) monopole
solutions.

The work is numerical, using a Matlab code to find
the solution, which is included in the supplementary ma-
terials. We find the monopole profiles have a thin-wall
behaviour as defined by the energy density of the con-
figuration. The field profiles for h and K are given in
the Figs. (4). These profiles correspond to thin-wall so-
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FIG. 4: The profiles for h/a and K for various values of ✏ and
for � = 0.1, a = 1.4 and n = 4.

lutions when we look at the total energy density shown
in Fig.(5). The total energy density starts at zero and
descends as ⇠ �r2, which we confirm numerically. This
is expected as the potential energy in the scalar field is
��✏ when h ⇡ 0. Then the energy density should be-
have simply as ��✏r2 including the contribution of the
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FIG. 5: The total energy density for the profiles in Fig.(4)for
various values of ✏ and for � = 0.1, a = 1.4 and and for n = 4.

volume element. There is a competing positive contribu-
tion from the magnetic field energy density as K starts to
descend from K = 1, however, in the interior, the total
energy density seems to be dominated by the negative
scalar potential energy. The descent of the total energy
density is arrested when the scalar field begins to move
away from h = 0. This is where the wall starts, in Fig.(5)
and implicitly from the profiles in Fig.(4) we see that the
increase in the energy density is rather brusque. This
allows for a well-defined value for the inner radius of the
wall. The outer radius of the wall starts once the total
energy density begins to get its dominant contribution
from the Coulomb energy of the exterior abelian mag-
netic field. This magnetic field is constructed from the
non-abelian magnetic field and the covariant derivatives
of the scalar field. The contribution to the total energy
density from the scalar field potential becomes negligible
as the scalar field assumes its value at the false vacuum
(which has been normalized to zero energy density) in the
exterior. The magnetic field behaves as ⇠ 1/r2, hence the
total energy density behaves as ⇠ r2(1/r2)2 = 1/r2. To
exhibit this numerically, we consider the log of the total
energy density squared, ln(E(r))2. We take the square
so that the log acts on a positive function. The slope of
this function should behave as ⇡ 4 in the interior region
and as ⇡ �4 in the exterior region, with a complicated
interpolation between these values within the wall region.
In Fig.(6), we plot the derivative (with respect to ln r)
of the log of the total energy density squared. We see
clearly that the interior value is indeed about +4 while
the exterior value is -4 as expected. Additionally, we see
that the wall thickness �, over which the behaviour of
the energy density interpolates from ⇠ �r2 to ⇠ 1/r2, is
relatively small compared to the wall radius.

The non-abelian magnetic energy density behaves in
a complicated way in the interior and as a 1/r2 contri-
bution in the exterior, as can be seen from Fig.(7) and
Fig.(8). The magnetic field energy density rises up to a
peak at the wall and then descends downwards to the ex-

FIG. 6: The derivative of the log of the total energy density
squared with respect to the log of r, for ✏ = 15 and for � = 0.1,
a = 1.4 and and n = 4.

pected ⇠ 1/r2 behaviour from its Coulomb tail. The
derivative by ln r of the log of the magnetic field en-
ergy density squared asymptotes to -4 confirming that
the magnetic field energy density behaves like ⇠ 1/r2 in
the exterior.

FIG. 7: The magnetic energy density for ✏ = 15 and for � =
0.1, a = 1.4 and and n = 4.

In Fig.(9) we plot the energy density in the covariant
derivative of the scalar field and in Fig.(10) the derivative
by ln r of the log of its contribution to the energy den-
sity squared. We observe a vanishing contribution in the
interior, then a brusque rise up at the inner wall radius,
and then an interpolation to the exterior energy density
contribution which behaves exactly like ⇠ 1/r2 as seen
from the exterior behaviour in Fig.(10) which assumes
the corresponding asymptotic value of -4.

We end this section with Fig.(11) of multiple profiles
for the solutions for h and K for various values of ✏. All
the values of the parameters satisfy the condition that
✏̄ < a6 as is required. The values of n range from ✏ = 8
in Fig. (4), to ✏ = 800 in Figure (11). Explicitly for
the values at the two extremes, we have ✏ = 8, � = 0.1
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FIG. 5: The total energy density for the profiles in Fig.(4)for
various values of ✏ and for � = 0.1, a = 1.4 and and for n = 4.

volume element. There is a competing positive contribu-
tion from the magnetic field energy density as K starts to
descend from K = 1, however, in the interior, the total
energy density seems to be dominated by the negative
scalar potential energy. The descent of the total energy
density is arrested when the scalar field begins to move
away from h = 0. This is where the wall starts, in Fig.(5)
and implicitly from the profiles in Fig.(4) we see that the
increase in the energy density is rather brusque. This
allows for a well-defined value for the inner radius of the
wall. The outer radius of the wall starts once the total
energy density begins to get its dominant contribution
from the Coulomb energy of the exterior abelian mag-
netic field. This magnetic field is constructed from the
non-abelian magnetic field and the covariant derivatives
of the scalar field. The contribution to the total energy
density from the scalar field potential becomes negligible
as the scalar field assumes its value at the false vacuum
(which has been normalized to zero energy density) in the
exterior. The magnetic field behaves as ⇠ 1/r2, hence the
total energy density behaves as ⇠ r2(1/r2)2 = 1/r2. To
exhibit this numerically, we consider the log of the total
energy density squared, ln(E(r))2. We take the square
so that the log acts on a positive function. The slope of
this function should behave as ⇡ 4 in the interior region
and as ⇡ �4 in the exterior region, with a complicated
interpolation between these values within the wall region.
In Fig.(6), we plot the derivative (with respect to ln r)
of the log of the total energy density squared. We see
clearly that the interior value is indeed about +4 while
the exterior value is -4 as expected. Additionally, we see
that the wall thickness �, over which the behaviour of
the energy density interpolates from ⇠ �r2 to ⇠ 1/r2, is
relatively small compared to the wall radius.

The non-abelian magnetic energy density behaves in
a complicated way in the interior and as a 1/r2 contri-
bution in the exterior, as can be seen from Fig.(7) and
Fig.(8). The magnetic field energy density rises up to a
peak at the wall and then descends downwards to the ex-

FIG. 6: The derivative of the log of the total energy density
squared with respect to the log of r, for ✏ = 15 and for � = 0.1,
a = 1.4 and and n = 4.

pected ⇠ 1/r2 behaviour from its Coulomb tail. The
derivative by ln r of the log of the magnetic field en-
ergy density squared asymptotes to -4 confirming that
the magnetic field energy density behaves like ⇠ 1/r2 in
the exterior.

FIG. 7: The magnetic energy density for ✏ = 15 and for � =
0.1, a = 1.4 and and n = 4.

In Fig.(9) we plot the energy density in the covariant
derivative of the scalar field and in Fig.(10) the derivative
by ln r of the log of its contribution to the energy den-
sity squared. We observe a vanishing contribution in the
interior, then a brusque rise up at the inner wall radius,
and then an interpolation to the exterior energy density
contribution which behaves exactly like ⇠ 1/r2 as seen
from the exterior behaviour in Fig.(10) which assumes
the corresponding asymptotic value of -4.

We end this section with Fig.(11) of multiple profiles
for the solutions for h and K for various values of ✏. All
the values of the parameters satisfy the condition that
✏̄ < a6 as is required. The values of n range from ✏ = 8
in Fig. (4), to ✏ = 800 in Figure (11). Explicitly for
the values at the two extremes, we have ✏ = 8, � = 0.1
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FIG. 8: The log of the magnetic energy density squared and
its derivative (by ln r) for ✏ = 15 and for � = 0.1, a = 1.4 and
and n = 4.

FIG. 9: The covariant derivative energy density for ✏ = 15
and for � = 0.1, a = 1.4 and and n = 4.

FIG. 10: The derivative by ln r of the log of the covariant
derivative energy density squared for ✏ = 15 and for � = 0.1,
a = 1.4 and and n = 4.

a = 1.4 and n = 4 giving ✏̄ = 1.26 < 7.53 = a6 and
for ✏ = 800, � = 0.1 a = 1.4 and n = 4 giving ✏̄ =
2.1 < 7.53 = a6. Fig.(11) gives the monopole profiles of

FIG. 11: Multiple solutions for h andK for various values of
✏ and for � = 0.1, a = 1.4 and and n = 4.

h and K for 6 different values of ✏ and fixed values of
� = 0.1, a = 1.4 and n = 4. It could be clarifying to see
the potential explicitly that gives rise to the thin-walled
monopoles. Here, in Figs. (12,13) we give the graph
of the potential for the two extreme values, ✏ = 8 and
✏ = 800.

FIG. 12: Graph of the potential (including a zoom around
r = 1), for ✏ = 8, � = 0.1, a = 1.4 and n = 4.

V. CONCLUSIONS

We will make several observations. First, the idea
that ✏ should be small is not the appropriate criterion,
it seems. Indeed, we get thin-wall type solutions as we
take ✏ quite large, as can be seen in Fig.(11), although
we always remain in the region ✏̄ < a6. Second, the
thin-wall nature of the solution is quite different than in
the case of thin-wall instantons that give rise to vacuum
bubbles [11]. With the vacuum bubbles, the interior of
the bubble was a quiescent true vacuum. In our case,



Conclusions
• We have computed the induced decay rate 

of the vacuum due to “false” monopoles of 
the false vacuum for thin wall monopoles. 

• The rate can be unsuppressed for heavy 
monopoles. 

• The monopole mass is controlled by the 
gauge coupling constant which has nothing 
to do with the scalar potential, which 
determines whether there is a false vacuum. 

• We have numerically shown the existence 
of thin wall monopoles. 


