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The Tragic Tale of Sohni Mahiwal1

The heroine Sohni, unhappily married to a man whom she
despises, swims every night to the island where her beloved
Mahiwal grazes the buffaloes. One night her sister-in-law replaces
the jar, which she uses as sort of a swimming vest, by a vessel of
unbaked clay, and she dies in the whirling waves.

Realizing her ill fate, legend has it that Sohni uttered the following
verses (translation mine):

Ephemeral this name of mine,
And unbaked my clay:
Fall, oh, I shall fall!
For souls such as mine
Are condemned to perish;
’Tis a truth, known to all!

1
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Lesson for quantum gravity



Prelude: BF theory

Take a Lie group G and its associated Lie algebra g and a
spacetime manifold M. Consider a g-valued spacetime 2-form B
and a G -connection A, and construct the action

S =
1

2

∫
M
d4x Tr(B ∧ F ),

where F = dA+ 1
2A ∧ A is the curvature of A.

Some notable features:

▶ Equation of motion for B implies F = 0, i.e. A is flat – the
theory is topological.

▶ The action is diffeomorphism invariant, but the first class
constraints of the theory generate G -valued gauge
transformations of A and B only. Hence, canonical
quantization of the theory is easy.
Horowitz, Commun. Math. Phys. 125, 417-437 (1989).
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Prelude: the Husain-Kuchar (HK) model

Given an su(2)-valued triad e ia and connection Ai
a (a ∈ {1, ..., 4})

on a 4d spacetime M, consider the generally covariant action

S =
1

2

∫
M
d4x Tr(e ∧ e ∧ F )

Contrast with the 4d Palatini action for GR: so(3, 1)-valued tetrads
replaced with su(2)-valued triads.

Contrast also with BF theory, where e ∧ e is replaced with an
su(2)-valued 2-form B.

Husain and Kuchar, Phys. Rev. D 42, 4070 (1990).
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Canonical HK

Assuming M = R× Σ, the canonical decomposition of the action
is straightforward:

S =

∫
dt

∫
Σ
d3x(Ẽ a

i Ȧ
i
a − Ai

0G̃i − (e i0E
a
i )C̃a)

where Ẽ a
i = det(e)E a

i = ϵ̃0abcϵijke
j
be

k
c , and

G̃i = −DaẼ
a
i ≈ 0 (Gauss)

C̃a = Ẽb
i F

i
ab ≈ 0 (spatial diffeos)

No Hamiltonian constraint!

▶ The theory is non-dynamical: the geometry of Σ does not
evolve. But not topological: local degrees of freedom exist.

▶ There’s an invertible spatial metric gab = δije
i
ae

j
b,

a, b ∈ {1, 2, 3}. Thus interesting three-geometries exist.
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Enter HK2.0

Consider the replacement

e ia → Daϕ
i

where D is the covariant derivative with connection A and ϕ is an
su(2)-valued scalar.

The action now decomposes as

S =

∫
dtd3x(Ẽ a

i Ȧ
i
a + p̃i ϕ̇

i − Ai
0G̃i );

Ẽ a
i = ϵ̃abcϵijkDbϕ

jDcϕ
k , p̃i = ϵ̃abcϵijkDaϕ

jF k
bc

with only one constraint, a modified Gauss law with a source:

G̃i = −(DaẼ
a
i + ϵijkϕ

j p̃k) ≈ 0

No Hamiltonian and diffeomorphism constraints!
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i
a + p̃i ϕ̇

i − Ai
0G̃i );
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But whither the constraints?

The theory is generally covariant. But the first-class constraints of
the theory (namely, the Gauss law) generate only SU(2)
transformations of the gauge field A. Where does the remaining
gauge redundancy go?

This is a common occurrence in a large class of generally covariant
theories of connections, e.g. 2+1 gravity, BF theories,
Chern-Simons theory, and so on.

In these theories, for any generator of diffeomorphisms v ,

LvA = G -transformations + equations-of-motion terms

where G is the gauge group of the connection A.
Horowitz, Commun. Math. Phys. 125, 417-437 (1989). Witten, Nuclear Physics B311 (1988/89) 46-78. Henneaux
and Teitelboim, Quantization of Gauge Systems. Princeton University Press, 1992.
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But whither the constraints?

In particular, the equations of motion for HK2.0 are

[F , ϕ] = 0, [[F , ϕ],Dϕ] + [ϕ, [Dϕ,F ]] = 0

Though the full story is a bit more subtle, essentially, if the first
equation is required to hold, it can be shown that diffeomorphisms
are equivalent to SU(2) gauge transformations.
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Some appealing features of the model

▶ Generally covariant gauge theory with local degrees of
freedom that possesses only a Gauss constraint.

▶ A large solution space in the classical theory. In particular,
solutions to 2+1 gravity form a proper subspace of solutions
to HK2.0.

The Gauss law DẼ + [ϕ, p̃] = 0 can be satisfied for any values
of ϕ and A, provided Ẽ = p̃ = 0.

But the 3-metric qab = Daϕ · Dbϕ depends only on A and ϕ.

Thus, by appropriately choosing A and ϕ, one can construct
any 3-metric.
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freedom that possesses only a Gauss constraint.

▶ A large solution space in the classical theory. In particular,
solutions to 2+1 gravity form a proper subspace of solutions
to HK2.0.

▶ Amenable to quantization via multiple methods; viable toy
model.

▶ For instance, canonical quantization via LQG methods yields a
Hilbert space of spin network states with a finite number of
charges ϕ sitting at the vertices.

▶ Would be interesting to look at the spinfoam and group field
theory models of the theory (work currently underway).
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Thank you!
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