Pierre-P. A. Ouimet Assistant Professor Department of Physics

In Search of a Hidden Sector: the Phenomenology of Dark Sector Models

Question: What is Dark Matter, and why should we care?

Taken from Symmetry, Illustration by Sandbox Studio, Chicago with Ana Kova

Why Should we Care? There is ample observational evidence for the existence of dark matter!

- Galactic Rotation Curves
- Galaxy Clusters ______
- CMB

What is Dark Matter?

Luminous Matter (~5%)

Standard Model of Elementary Particles

Dark Matter (~26%)

Black Holes?

...and?

The Core-Cusp Problem

-In the CDM paradigm, dark matter particles interact with each other only gravitationally and do not collide.

-While the simulations using CDM produce distributions where the density sharply increases at the centre of the galaxies ("cusps"), observations of dwarf galaxies show constant central distributions ("cores").

-A solution to the core-cusp problem is self-interacting dark matter (SIDM).

What is Dark Matter?

Luminous Matter (~5%)

Standard Model of Elementary Particles

Dark Matter (~26%)

Dark or Hidden Sector!

Is there a "dark" Standard Model?

We would like to connect the Standard Model to our Hidden Sector, this is done through a "portal" interaction or interactions.

Four commonly discussed portal interactions:

- Scalar Portal: Dark Higgs
- Pseudoscalar Portal: Axion-like Particle
- Neutrino Portal: Heavy Neutral Lepton
- Vector Portal: Dark Photon

We would like to connect the Standard Model to our Hidden Sector, this is done through a "portal" interaction or interactions.

Four commonly discussed portal interactions:

- Scalar Portal: Dark Higgs
- Pseudoscalar Portal: Axion-like Particle
- Neutrino Portal: Heavy Neutral Lepton
- Vector Portal: Dark Photon

Vector Portal: Dark Photon

The Lagrangian for a dark fermion, χ , coupling to a dark photon that kinetically mixes with the standard model is:

 $\mathcal{L}_D = \bar{\chi} (i\gamma^\mu D_\mu - m_\chi) \gamma$

 \mathcal{A}_{μ} :U(1)_D gauge field

Under the field redefinition: $\mathcal{A}_{\mu} \rightarrow \mathcal{A}'_{\mu} - \kappa B_{\mu}$

 $\bar{\chi}(i\gamma^{\mu}\partial_{\mu}-e'\gamma^{\mu})$

B. Holdom, Phys.Lett. B166, 196 (1986).

$$\chi + rac{1}{4} \mathcal{A}_{\mu
u} \mathcal{A}^{\mu
u} + rac{\kappa}{2} B_{\mu
u} \mathcal{A}^{\mu
u} \mathcal{A}^{\mu
u} + rac{\kappa}{2} B_{\mu
u} \mathcal{A}^{\mu
u} \mathcal{A}^{\mu
u}$$

$$^{\mu}\mathcal{A}_{\mu}^{\prime}+\kappa e^{\prime}\gamma^{\mu}B_{\mu}-m_{\chi})\chi+rac{1}{4}\mathcal{A}_{\mu\nu}^{\prime}\mathcal{A}^{\prime\mu\nu}$$

Vector Portal: Dark Photon

The Lagrangian for a dark fermion, χ , coupling to a dark photon that kinetically mixes with the standard model is:

B. Holdom, Phys.Lett. B166, 196 (1986).

A More General Case: Dark Photon+Dark Z

"Dark" Hypercharge: dark Abelian vector field

Three possible phases can be considered:

- -Okun phase: B'_{μ} is purely massive
- -Holdom phase: B'_{μ} is massless
- -Mixed phase: Both massless and massive dark gauge fields are present

E. Izaguirre and I. Yavin, Phys Rev D 92, 035014 (2015)

After field redefinitions, to order κ , one gets:

$$\mathscr{L} \supset A \cdot \left[eJ_{EM} - \kappa \cos(\theta_W) \cos(\theta_{W'}) J_{EM'} \right] \longrightarrow$$

$$\mathscr{L} \supset Z \cdot \left[\frac{g_2}{\cos(\theta_W)} J_Z + e' \kappa \sin(\theta_W) \cos(\theta_{W'}) J_{EM'} - g'_2 \tan(\theta_{W'}) \kappa \sin(\theta_W) \left\{ \frac{M_Z^2}{M_Z^2 - M_{Z'}^2} \right\} J_{Z'} \right] \longrightarrow \text{ Z now couples to dark EM current and dark Z contracted on the second se$$

$$\mathscr{L} \supset Z' \cdot \left[\frac{g_2'}{\cos(\theta_{W'})} J_{Z'} + e' \kappa \sin(\theta_W) \cos(\theta_{W'}) J_{EM} + g_2 \tan(\theta_W) \sin(\theta_{W'}) J_{EM} \right]$$

E. Izaguirre and I. Yavin, Phys Rev D 92, 035014 (2015)

Photon now couples to dark EM current

The Experimental Context

International Journal of Modern Physics A, September 2014, Vol. 29, No. 23

For what follows we will focus on the search for millicharged particles.

MOnopoles and Exotics Detector At the LHC

MoEDAL is sensitive to many new physics scenarios!

MoEDAL Apparatus for Penetrating Particles

Postdoc: Michael Staelens

Holdom Phase: Milli-Charged Fermions

$$egin{aligned} &
ho,\,\omega,\,\phi,\,J/\psi\,,\ &\psi(2S),\,\Upsilon(nS) \end{aligned}$$

Charge-normalized millicharged fermion production cross-sections at

 $\sqrt{s} = 14$ TeV. Meson decays

are scaled by their respective branching ratios.

Projected 95% confidence level exclusion limits for MAPP-1 for milli-charged fermion produced in pp collisions.

Run 3:
$$\sqrt{s} = 13.6$$
 TeV,
 $L_{\text{LHCb}}^{\text{int}} = 30 \text{ fb}^{-1}$

HL-LHC:
$$\sqrt{s} = 14$$
 TeV,
 $L_{\text{LHCb}}^{\text{int}} = 300 \text{ fb}^{-1}$

M. Kalliokoski, V.A. Mitsou, M. de Montigny, A. Mukhopadhyay, P.-P. A. Ouimet, J. Pinfold, A. Shaa, M. Staelens, J. High Energ. Phys. 2024, 137 (2024).

Graduate Student: Shafakat Arifeen

Mixed Phase: Milli-Charged Scalars

We use a model inspired by chiral effective theories of QCD:

$$\mathcal{L}_{\rm int}^{2\phi} = \frac{1}{F_0^2} \operatorname{Tr}(D_\mu \phi D^\mu \phi) + \frac{BF_0^2}{2} \operatorname{Tr}\left(2M - \frac{M\phi^2}{2}\right)$$

$$\begin{aligned} \mathcal{L}_{\text{int}}^{4\phi} &= \frac{1}{4F_0^2} \text{Tr} \left(-\frac{1}{6} (\mathcal{D}_{\mu} \phi \mathcal{D}^{\mu} \phi \phi^2 + \mathcal{D}_{\mu} \phi \phi \mathcal{D}^{\mu} \phi \phi + \mathcal{D}_{\mu} \phi \phi^2 \mathcal{D}^{\mu} \phi) \right. \\ &+ \frac{1}{4} (\mathcal{D}_{\mu} \phi \phi + \phi \mathcal{D}_{\mu} \phi) (\mathcal{D}^{\mu} \phi \phi + \phi \mathcal{D}^{\mu} \phi) \\ &- \frac{1}{6} (\mathcal{D}_{\mu} \phi \phi^2 \mathcal{D}^{\mu} \phi + \phi \mathcal{D}_{\mu} \phi \phi \mathcal{D}^{\mu} \phi + \phi^2 \mathcal{D}_{\mu} \phi \mathcal{D}^{\mu} \phi) \Big) \\ &+ \frac{B_0 F_0^2}{2} \text{Tr} \left(\frac{\mathcal{M} \phi^4}{24F_0^4} \right) \end{aligned}$$

$$\boldsymbol{\phi} = \begin{pmatrix} \pi_D^0 + \frac{1}{\sqrt{3}} \eta_D & \sqrt{2} \pi_D^+ & \sqrt{2} K_D^+ \\ \sqrt{2} \pi_D^- & -\pi_D^0 + \frac{1}{\sqrt{3}} \eta_D & \sqrt{2} K_D^0 \\ \sqrt{2} K_D^- & \sqrt{2} \bar{K}_D^0 & -\frac{2}{\sqrt{3}} \eta_D \end{pmatrix}$$

To which we add a Wess-Zumino-Witten like term:

$$n\mathcal{L}_{WZW}^{\text{ext}} = -en(A'_{\mu} - \kappa \cos \theta_{W} \cos \theta_{W'} A_{\mu})J^{\mu} + i\frac{ne^{2}}{48\pi^{2}}\epsilon^{\mu\nu\rho\sigma}\partial_{\nu}(A'_{\rho} - \kappa \cos \theta_{W} \cos \theta_{W'} A_{\rho})(A'_{\sigma} - \kappa \cos \theta_{W} \cos \theta_{W'} A_{\rho})(A'_{\sigma} - \kappa \cos \theta_{W'} \cos \theta_{W'} \cos \theta_{W'} A_{\rho})(A'_{\sigma} - \kappa \cos \theta_{W'} \cos \theta_{W'} \cos \theta_{W'} A_{\rho})(A'_{\sigma} - \kappa \cos \theta_{W'} \cos \theta_{W'} \cos \theta_{W'} A_{\rho})(A'_{\sigma} - \kappa \cos \theta_{W'} \cos \theta_{W$$

$$U(x) = \exp\left(i\frac{\phi(x)}{F_0}\right)$$

 $-\cos\theta_{W'}A_{\sigma}) \qquad J^{\mu} = \frac{\epsilon^{\mu\nu\rho\sigma}}{48\pi^2} \operatorname{Tr}\left(Q\partial_{\nu}UU^{\dagger}\partial_{\rho}UU^{\dagger}\partial_{\sigma}UU^{\dagger} + QU^{\dagger}\partial_{\nu}UU^{\dagger}\partial_{\rho}UU^{\dagger}\partial_{\sigma}U\right)$

Case 1: Drell-Yan production of milli-charged scalars

Case 2: photo-fusion production of milli-charged scalars

 $m_{\pi_D^+}(\text{GeV})$

Projected 95% confidence level exclusion limits for MAPP-1 for milli-charged scalars produced in pp collisions and photo-fusion.

Run 3:
$$\sqrt{s} = 13.6$$
 TeV,
 $L_{\text{LHCb}}^{\text{int}} = 30 \text{ fb}^{-1}$

HL-LHC:
$$\sqrt{s} = 14 \text{ TeV}$$
,
 $L_{\text{LHCb}}^{\text{int}} = 300 \text{ fb}^{-1}$

95% C.L. Exclusion Plot ($\sqrt{s} = 14 \text{ TeV}$) (MZ` = 45 GeV, F = 1 GeV)

m_{mCP} (GeV)

- Hidden sector models offer a rich and interesting phenomenology that is accessible at accelerators.
- Indications are that MAPP-1 will access novel parameter space in the search for mCP.
- Much work yet remains to be done!

Conclusion