Comparison Between Ground-based Lidar Measurements from MPLCAN and Simulated Retrievals from the Aerosol Limb Imager

Emily Tracey (Western University)

Landon Rieger (University of Saskatchewan,) Bob Sica (Western University), Victoria Pinnegar (Western University)

Introduction

There is an increased demand for continuous measurements of the atmosphere as severe weather events become more frequent

Quebec Wildfires in 2023, the worst Canadian Wildfire season on record[2]

How do we measure our atmosphere?

Remote sensing - acquire information about our atmosphere from the ground or from space by detecting reflected or emitted radiation

HAWC (High-altitude Aerosols, Water vapour and Clouds) Satellite Mission

HAWC consists of 3 Canadian instruments and a Canadian satellite that will be part of the international NASA-led Atmosphere Observing System (AOS).

The Canadian instruments:

- 1. ALI (Aerosol Limb Imager)
- 2. SHOW (Spatial Heterodyne Observations of Water)
- 3. TICFIRE (Thin Ice Cloud in Far InfraRed Emissions)

Set to fly in 2031

Instruments and satellites involved in HAWC [3]

ALI Instrument

<u>Objective</u>: characterize **aerosols** in the upper troposphere and stratosphere to reduce the large uncertainty in climate forcing due to aerosols

aerosol - particles or droplets suspended in the air. Ex: dust, pollen, smoke

Illustration of ALI measurement geometry [4]

Micro Pulse Lidars (MPLs)

- Transmitter is a 532 nm laser emitting pulses of 3-4 μ J
- A telescope collects photons that are backscattered from the atmosphere at the same wavelength (elastic scattering)
- It is a dual-polarized lidar allowing for total volume depolarization ratio measurements

MPLCAN is a network of 5 MPLs across Canada, with 3 new nodes coming online this summer

A Little Radiative Transfer

Extinction – fraction of light lost when transmitted through a medium due to scattering and absorption

extinction coefficient: $\alpha = N(z) \sigma_{tot} (\lambda)$

$$\alpha(z,\lambda) = \alpha_{\text{mol}}^{sca}(z,\lambda) + \alpha_{\text{aer}}^{sca}(z,\lambda) + \alpha^{abs}(z,\lambda)$$

<u>**Backscatter</u>** – amount of light <u>backscattered</u> to the lidar receiver (180° for MPLs)</u>

backscatter coefficient:
$$\beta(z, \lambda) = N(z) \left(\frac{d\sigma_{sca}(\lambda)}{d\Omega}\right)_{\pi}$$

$$\beta(z, \lambda) = \beta_{mol}(z, \lambda) + \beta_{aer}(z, \lambda)$$

MPL measurements

Attenuated backscatter can be derived from photon counts detected by the MPL.

$$\beta_{\text{att}}(z, \lambda) = \beta(z, \lambda) e^{-2 \int_0^z \alpha(z', \lambda) dz'}$$

We cannot separate extinction and backscatter in an elastic lidar measurement without assumption of the lidar ratio:

$$S = \frac{\alpha}{\beta}$$
 units: sr

ALI measurements

ALI measures limb scattered radiance from the Sun and retrieves:

Aerosol extinction

• Aerosol particle size

Relating MPL and ALI Measurements

MPL:
$$\beta_{att}(\alpha, \beta)$$
 ALI: $\alpha_{aer} \& n_{aer}(r)$

I convert the ALI retrievals into attenuated backscatter by calculating the aerosol backscatter coefficient for direct comparison with MPLs.

<u>Method 1</u>: assume lidar ratio and use retrieved extinction:

$$\beta_{aer} = \alpha_{aer}/S$$

<u>Method 2</u>: Use retrieved aerosol size distribution and Mie theory: Size distribution $\beta_{aer}(z, \lambda) = N_{aer}(z) \left(\frac{d\sigma_{sca}(\lambda)}{d\Omega}\right)_{\pi} \qquad \left(\frac{d\sigma_{sca}(\lambda)}{d\Omega}\right)_{\pi} = \frac{1}{4\pi} \int_{0}^{\infty} \pi r^{2}Q_{back}(r, m, \lambda)n_{aer}(r)dr$ Number density backscattering efficiency

Initial Result Comparing ALI and MPL Simulations

Scattering ratio - ratio of total attenuated backscatter to molecular attenuated backscatter

Future Work

- Run several coincident measurements using various atmospheric models, including higher aerosol loadings that would be more easily detectable by MPLs
- Simulate the satellite passing over the MPLCAN during a wildfire smoke event where a pyrocumulonimbus cloud injects smoke into the stratosphere

Acknowledgements

- Supervisor: Dr. Bob Sica (Western University)
- Colleagues: Victoria Pinnegar and Vasura Jayaweera (Western University)
- Collaborator: Landon Rieger (University of Saskatchewan)

References

[1] <u>https://earthobservatory.nasa.gov/images/150392/canada-braces-for-fiona</u>

[2] https://montreal.ctvnews.ca/forest-fire-centre-declares-2023already-worst-year-ever-for-canadian-wildfires-1.6456879

[2] Gobbi, G. P. (1995). Lidar estimation of stratospheric aerosol properties: Surface, volume, and extinction to backscatter ratio. *Journal of Geophysical Research: Atmospheres, 100*(D6), 11219–11235. https://doi.org/10.1029/94jd03106

[3] https://www.asc-csa.gc.ca/eng/satellites/hawc/

[4] L. Rieger, Adam Bourassa, Alexis Bourassa, "ALI Instrument and Simulator Report," Canadian Space Agency, June 21, 2022. [Online]

