

leen's

HELIX

Melissa Baiocchi

Queen's University

Tuesday May 28th, 2024, CAP Congress

- High Energy Charged
 Particles
- Originating from space
 - Mostly nuclei: 85%
 Protons, 12% Helium,
 2% Heavy Nuclei
 - This distribution changes with energy

- High Energy Charged
 Particles
- Originating from space
 - Mostly nuclei: 85%
 Protons, 12% Helium,
 2% Heavy Nuclei
 - This distribution changes with energy

- High Energy Charged Particles
- Originating from space
 - Mostly nuclei: 85%
 Protons, 12% Helium,
 2% Heavy Nuclei
 - This distribution changes with energy

- High Energy Charged
 Particles
- Originating from space
 - Mostly nuclei: 85%
 Protons, 12% Helium,
 2% Heavy Nuclei
 - This distribution changes with energy

Scientific Motivation

- Every element present in our solar system is measured in CRs. Some elements are more abundant in CRs than in the solar system
- ¹⁰Be is an unstable isotope of half-life 1.39 x 10⁶ years, ⁹Be is stable
- Quantifying the ¹⁰Be/⁹Be ratio of cosmic rays would help determine average lifetime of cosmic rays in our galaxy and provide strong constraints for current propagation models

HELIX Collaboration

University of Chicago

•Hyebin Jeon, Rostom Mbarek, Keith McBride, Dietrich Muller, Kenichi Sakai, Scott P. Wakely

Indiana University

•Brandon Kunkler, Michael Lang, James Musser, Gerard Visser

🌞 McGill University

•David Hanna, Stephane O'Brien

Northern Kentucky University

•Scott Nutter

Ohio State University

•Patrick Allison, James J. Beatty, Lucas Beaufore, Dennis Calderone

Pennsylvania State University

•Yu Chen, Stephane Coutu, Isaac Mognet, Monong Yu

• Queen's University

•Melissa Baiocchi, Avani Bhardwaj, Conor McGrath, Nahee Park

University of Michigan

•Noah Green, Gergory Tarle

High Energy Light Isotope eXperiment

- A magnetic spectrometer to measure ⁹Be and ¹⁰Be masses and achieve mass resolution of 3%
- 1 T superconducting magnet
- A payload designed for a longduration balloon flight
- Energy range: 0.1-3 GeV/nucleon
 → Stage 1 (first flight)

Challenges of Balloon Experiments

- Power: Only Solar Panels + Batteries
- Suspended Weight <2700 kg (To reach 40 km Alt.)
- Bandwidth limitation: High gain TDRSS: ~ 100 kbps
- Thermal limitation: Only conductive and radiative cooling
- You cannot repair or modify apparatus after launch!

Hodoscope

- "Hodos" and "Skopos" ---- Path Observer
- Four flat bundles of scintillating 1 mm diameter fibres in parallel (1 axis)
- When charged particles pass through, fibres transmit light to the ends and are read out by SiPMs

HELIX First flight hodoscope:

- Uses a fiber "weave" limited by allowable fiber bend radius
- Multiple fibers read out by the same SiPMs
- Calibration set up shown to the right

Hodoscope Design Improvement Plan

- No fibre weaving
- Each fibre optically connected to its own SiPM
- Combining signals from multiple SiPMs electronically

Challenges:

- Fibres: no bending <100 mm D
- SiPM surface is 2mmX2mm while fibre is 1mmX1mm
- Fibres must remain planar/flat
- Large number of SiPM channels

CAD Model Shows Prototype 2-SiPM Board for testing, not flight model

The Goal is to improve hodoscope step by step while checking the design!

SiPMs (MPPC) © Hamamatsu

SiPMs!

- Silicon Photo-Multipliers
- Each pixel is an avalanche photo-diode
- SiPMs are efficient in a high magnetic field!

Characterizing SiPMs

- Use temperature dependent IV-Curve measurement to find breakdown and operating voltage
- Amplify Signal!
- Get photo-electron spectrum (dark counts in this case)

(Shockingly) No SiPMs were harmed in the collection of this data

The CAEN CITIROC

For all your hodoscope readout needs

- 64 Channels for Measuring SiPMS!
- We need to optimize our data without full pulses!
- CITIROC is currently in use for hodoscope and RICH and working well!
- CITIROC is compact and has low power consumption!

2 SiPMs (in box) connected to Citiroc, cooled down to 10°C

Summary & Project Outlook

- A new HELIX hodoscope prototype is being designed and tested at Queen's!
- The design will use custom made SiPM boards, scintillating optic fibres and multiple custom CITIROC ASIC chips for read-out

Next Steps:

- Building jig to test optical coupling
- Combining electrical signals and calibrating hodoscope
- If successful, the new hodoscope will be on the next HELIX flight out of Antarctica!

HELIX to Launch Soon Out of Kiruna, Sweden!

BREAKING NEWS

HELIX HAS LAUNCHED!!!!!

HELIX to Launch Soon Out of Kiruna, Sweden! Last Night!!!

L-01:44:22 Access to balloon pad re

00-4

2024-05-28

BALLOON LINE DEPLOYMENT IN PROGRESS

First NASA Stratospheric balloon launch of the year!!!

TEAMS PREPARING NASA HELIX (HIGH-ENERGY LIGHT ISOTOPE EXPERIMENT)

Esrange Space Center, 5

100

11 1

HELIX to Launch Soon Out of Kiruna, Sweden! Last Night!!!

Thank You! Merci!

https://www.youtube.com/live/r1cZiLHM xNQ?si=xyI2lmDRbqQ5wYR_&t=25290

- High Energy Charged Particles, originating from outer space
 - Mostly nuclei: 85% Protons, 12% Helium, 2% Heavy Nuclei
 - This distribution changes with energy

Scientific Motivation

- Every element present in our solar system is measured in CRs. Some elements are more abundant in CRs than in the solar system
- ¹⁰Be is an unstable isotope of half-life 1.39 x 10⁶ years, ⁹Be is stable
- Quantifying the ¹⁰Be/⁹Be ratio of cosmic rays would help determine average lifetime of cosmic rays in our galaxy and provide strong constraints for current propagation models

