Statistics of Feynman integrals in ϕ^4 -theory

Paul-Hermann Balduf University of Waterloo & Perimeter Institute

2024 CAP Congress London, Ontario, May 28, 2024

based on JHEP 11 (2023) 160

Slides, references, data set etc. available from paulbalduf.com/research

Paul-Hermann Balduf, U Waterloo & PI

Statistics of Feynman integrals

Background and Motivation	Counts and symmetries	Distribution	Conclusion
●0	000	000000	000

Background

- ▶ Perturbative quantum field theory in flat (Euclidean) $D = 4 2\epsilon$ spacetime.
- ▶ Massless bosonic ϕ^4 -theory

$$\mathcal{L} = rac{1}{2} \partial_\mu \phi \partial^\mu \phi - rac{\lambda}{4!} \left(\phi^2
ight)^2.$$

- \Rightarrow Feynman graphs have 1 type of edge, 1 type of 4-valent vertex.
- ▶ We want to understand "typical properties" of vertex-type Feynman integrals.

Periods in ϕ^4 -theory

We consider only primitive (=no subdivergences) vertex-type graphs G in D = 4 − 2ε. Depend on energy scale ℓ := ln p²/μ² in a characteristic way:

$$\mathcal{F}(G) = ext{const} \cdot \left(rac{1}{\epsilon} rac{\mathcal{P}(G)}{L} - \mathcal{P}(G) \cdot \ell + \ell ext{-independent terms} + \mathcal{O}(\epsilon)
ight)$$

► First Symanzik polynomial ψ_G. Nontrivial part of integral is the *period* [Broadhurst and Kreimer 1995; Schnetz 2010], in parametric form:

$$\mathcal{P}(G) = \left(\prod_{e \in E_G} \int_0^\infty \mathsf{d} a_e\right) \, \delta\left(1 - \sum_{e=1}^{|E_G|} a_e\right) \frac{1}{\psi_G^2(\{a_e\})} \in \mathbb{R}.$$

► Why consider periods?

Periods in ϕ^4 -theory

We consider only *primitive* (=no subdivergences) vertex-type graphs G in D = 4 − 2ε. Depend on energy scale ℓ := ln ^{p²}/_{μ²} in a characteristic way:

$$\mathcal{F}(G) = ext{const} \cdot \left(rac{1}{\epsilon} rac{\mathcal{P}(G)}{L} - \mathcal{P}(G) \cdot \ell + \ell ext{-independent terms} + \mathcal{O}(\epsilon)
ight)$$

► First Symanzik polynomial ψ_G. Nontrivial part of integral is the *period* [Broadhurst and Kreimer 1995; Schnetz 2010], in parametric form:

$$\mathcal{P}(G) = \left(\prod_{e \in E_G} \int_0^\infty \mathsf{d} a_e\right) \delta\left(1 - \sum_{e=1}^{|E_G|} a_e\right) \frac{1}{\psi_G^2(\{a_e\})} \in \mathbb{R}.$$

- ► Why consider periods?
 - 1. Prototypical "simplest possible" honest Feynman integral (no numerator, independent of renormalization scheme, independent of momenta and angles).
 - 2. Their sum is the primitive beta function, conjecturally dominant in MS as $L \to \infty$.

How many graphs are there?

Just generate them all and count...

How many graphs are there?

Just generate them all and count...

 \Rightarrow > 1 billion at 15 loops.

Remark: Many things are known mathematically about "large random graphs". Asymptotically, a large random 4-regular graph either contains multiedges or is primitive.

L	Primitive
	vertex-type graphs
3	1
4	1
5	3
6	10
7	44
8	248
9	1688
10	13094
11	114016
12	1081529
13	11048898
14	120451435
15	1393614379
16	17041643034

Background and Motivation	Counts and symmetries	Distribution	Conclusion
00	○●○	000000	000
Symmetries			

- Sometimes, the period of non-isomorphic graphs has the same value [Schnetz 2010; Panzer 2022; Hu et al. 2022].
- ▶ All "decompletions" of the same vacuum graph have the same period

- ▶ Planar dual graphs have the same period (this is rare).
- Some other symmetries.

Counts

1	All vertex-type	Vacuum graphs	planar	independent	
	decompletions		decompletions	periods	
3	1	1	1	1	
4	1	1	1	1	
5	3	2	2	1	
6	10	5	5	4	
7	44	14	19	9	
8	248	49	58	31	
9	1,688	227	235	134	
10	13,094	1,354	880	819	
11	114,016	9,722	3,623	6,197	
12	1,081,529	81,305	14,596	55,196	
13	11,048,898	755,643	60,172	543,535	
14	120,451,435	7,635,677	246,573	5,769,143	
15	1,393,614,379	82,698,184	1,015,339	65,117,118	

 \Rightarrow Millions of independent integrals remain.

Computing periods numerically

- ▶ Periods can be quickly (~ 1h/graph) computed numerically with new algorithm up to $L \approx 16$ loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023]
- Use symmetries to improve accuracy and check programs.
- ► Computed all graphs including 13 loops, incomplete uniform samples for L ≤ 18. Typical accuracy 4 digits (≈ 100ppm).
- ▶ $\approx 1.3 \cdot 10^6$ distinct completions (=vacuum graphs) computed, $\approx 33 \cdot 10^6$ decompletions (=vertex graphs) known.

Distribution histogram

- $\blacktriangleright\,$ Most periods are somewhat close to the mean $\langle {\cal P} \rangle$
- ▶ There are few, but extreme, outliers. Standard deviation $\sigma(\mathcal{P}) \approx \langle \mathcal{P} \rangle$.
- ▶ The pattern of outliers repeats at each loop order, but scaled.

Continuous part of the distribution

- ▶ Distribution of periods is none of the usual well-known distribution functions.
- ► Can be modeled empirically with 5 free parameters.
- ▶ Distribution is essentially unchanged at higher loop order.

Distribution of \mathcal{P} for L=13

A curious observation

- The quantity $\frac{1}{\sqrt{\mathcal{P}}}$ is almost normally distributed.
- I don't know why.

Which ones are the outliers?

- The Zigzag graphs (=(1,2)-circulants) and their cousins.
- ► They look "symmetric", but that's deceptive, overall only weak correlation between \mathcal{P} and symmetry factor.

Behavior of the mean

Leading asymptotic growth of full beta function in MS from instanton calculation [A. J. McKane, Wallace, and Bonfim 1984; Alan J. McKane 2019] + conjecture that primitive graphs dominate MS + asymptotics of number of graphs [Cvitanović, Lautrup, and Pearson 1978; Borinsky 2017] implies

$$\langle \mathcal{P} \rangle \sim C \cdot \left(\frac{3}{2}\right)^{L+3} L^{\frac{5}{2}}$$

▶ Matches observed growth, potentially with different constant *C*.

Background and Motivation	Counts and symmetries	Distribution	Conclusion
00		000000	●00
Conclusion			

 There are very many Feynman graphs. Obtained counts and asymptotics for numbers, symmetry factors, planarity etc.

Background and Motivation	Counts and symmetries	Distribution	Conclusion
00		000000	●00

Conclusion

- There are very many Feynman graphs. Obtained counts and asymptotics for numbers, symmetry factors, planarity etc.
- ▶ The distribution is largely "smooth" apart from a few extreme outlier graphs.
- Obtained various averages, standard deviations, higher moments, correlation coefficients.
- ▶ Obtained numerical approximation of 18-loop O(N)-symmetric primitive ϕ^4 beta function.

What's that good for?

- \blacktriangleright Beta function \Rightarrow critical exponents for all systems in the same universality class.
- ► General understanding of perturbative QFT and divergence of perturbation series.
- Understand accuracy of samples, or of extrapolation of special classes (e.g. planar graphs are not a good proxy for all graphs).
- Use empirical data for weighted Monte-Carlo sampling of graphs, overcome the problem of large variance (see my talk at Theory Canada / my website).

Thank you!

for staying for the last talk

From the science policy session: Communication is important! Come join Mastodon :-)

@paulbalduf@mathstodon.xyz

References I

- Borinsky, Michael (2017). "Renormalized Asymptotic Enumeration of Feynman Diagrams". In: Annals of Physics 385, pp. 95–135. DOI: 10.1016/j.aop.2017.07.009.
- (2023). "Tropical Monte Carlo Quadrature for Feynman Integrals". In: Annales de l'Institut Henri Poincaré D 10.4, pp. 635–685. DOI: 10.4171/AIHPD/158. arXiv: 2008.12310. arXiv: 2008.12310.
- Borinsky, Michael, Henrik J. Munch, and Felix Tellander (2023). Tropical Feynman Integration in the Minkowski Regime. DOI: 10.48550/arXiv.2302.08955. arXiv: 2302.08955 [hep-ph, physics:hep-th, physics:math-ph]. arXiv: 2302.08955. preprint.
- Broadhurst, D. J. and D. Kreimer (1995). "Knots and Numbers in \$\phi^4\$ Theory to 7 Loops and Beyond". In: International Journal of Modern Physics C 06.04, pp. 519–524. DOI: 10.1142/S012918319500037X. arXiv: hep-ph/9504352. arXiv: hep-ph/9504352.
- Cvitanović, Predrag, B. Lautrup, and Robert B. Pearson (1978). "Number and Weights of Feynman Diagrams". In: *Physical Review D* 18.6, p. 1939. DOI: 10.1103/PhysRevD.18.1939.
- Hu, Simone et al. (2022). "Further Investigations into the Graph Theory of ϕ^4 -Periods and the c_2 Invariant". In: Annales de l'Institut Henri Poincaré D 9.3, pp. 473–524. DOI: 10.4171/AIHPD/123.
- McKane, A. J., D. J. Wallace, and O. F. de Alcantara Bonfim (1984). "Non-Perturbative Renormalisation Using Dimensional Regularisation: Applications to the *ε* Expansion". In: Journal of Physics A: Mathematical and General 17.9, pp. 1861–1876. DOI: 10.1088/0305-4470/17/9/021.
 McKane, Alan J. (2019). "Perturbation Expansions at Large Order: Results for Scalar Field Theories Revisited". In: Journal of Physics A: Mathematical and Theoretical 52.5, p. 055401. DOI:
 - 10.1088/1751-8121/aaf768. arXiv: 1807.00656 [hep-th]. arXiv: 1807.00656.

References II

Panzer, Erik (2022). "Hepp's Bound for Feynman Graphs and Matroids". In: Annales de l'Institut Henri Poincaré D 10.1, pp. 31–119. DOI: 10.4171/aihpd/126.
Schnetz, Oliver (2010). "Quantum Periods: A Census of φ⁴-Transcendentals". In: Commun.Num.Theor.Phys. 4, pp. 1–48. arXiv: 0801.2856. arXiv: 0801.2856.