Zinc and Cadmium: XPS Chemical State Determination Using Auger Parameters and Auger Peak Curve-Fitting Procedures

Sage Buchanan, Lauren Grey, Jeffrey D. Henderson, Mark C. Biesinger

May 27th, 2024

Why Zinc and Cadmium?

Zinc

- ~ 13 million metric tons produced globally in 2022^[1]
- 4th most produced metal in the world^[2]
- Market demand expected to exceed production capabilities in the coming years!

Cadmium

- ~ 24 000 metric tons produced globally in 2022^[1]
- >5% of the global solar cell market^[4]

Mineral Commodities Summaries 2023. United States Geological Survey https://pubs.usgs.gov/periodicals/mcs2023.pdf
 Zinc Statistics and Information | U.S. Geological Survey (2021). https://www.usgs.gov/centers/national-minerals-information-center/zinc-statistics-and-information
 Jia, X. et al. Chem. Rev. 120 (15) 2020, 7795-7866.

[4] Solar Technologies Office – Cadmium Telluride. Office of Energy Efficiency and Renewable Energy. (2023) <u>https://www.energy.gov/eere/solar/cadmium-telluride</u>

Zinc on Surfaces

Forms of Zinc on Surfaces

- Different forms of zinc coatings
- Corrosion by-products
- Contaminants
- Zinc alloys

A similar story is true for Cadmium

3

Speciation by XPS

Photoelectron Signals

- One-electron process
- For many elements... speciation achieved by consideration of the photoelectron line only
- Consider the Zn 2p_{3/2} peak... 1s²

Speciation made difficult due to overlap. Cannot use this peak alone to differentiate.

Κ

Sample	Zinc 2p _{3/2} Binding Energy / eV			#
Zn Metal	1021.7	±	0.3	15
ZnO	1021.8	±	0.5	13
Zn(OH) ₂	1022.4	±	0.5	4
ZnF ₂	1022.2	±	0.7	3
ZnS	1021.9	±	0.2	4
Zn ₅ (CO ₃) ₂ (OH) ₆	1022.2	±	0.4	2

Spread of only 0.7 eV (1021.7 -1022.4 eV)

Speciation by XPS

Auger Electron Signals

- Three-electron process
- Auger lines have unique shapes and positions
- Consider the Zn LMM signal...

Sample	Zinc L ₃ M _{4,5} M _{4,5} Kinetic Energy / eV			#
Zn Metal	992.2	±	0.2	15
ZnO	988.4	±	0.6	13
Zn(OH) ₂	987.2	±	0.5	4
ZnF ₂	986.3	±	0.4	3
ZnS	989.7	±	0.4	4
Zn ₅ (CO ₃) ₂ (OH) ₆	987.5	<u>+</u>	0.6	2

More information available when considering Auger signals!

Spread of 5.9 eV (986.3 – 992.2 eV)

Speciation by XPS

Auger Parameter, α'

 Originally proposed by Dr. Charles Wagner^[1] and later modified

$\alpha' = E_K(Auger) + E_B(Photoelectron)$

- Useful for chemical state analyses
- Avoids interference of surface charging (*i.e.*, same magnitude / opposite in direction)

Sample	Auger Parameter Kinetic Energy / eV			#
Zn Metal	2013.9	±	0.2	15
ZnO	2010.2	±	0.2	13
Zn(OH) ₂	2009.5	±	0.3	4
ZnF ₂	2008.4	±	1.1	3
ZnS	2011.6	±	0.3	4
Zn₅(CO₃)₂(OH)₀	2009.7	±	0.1	2

Wagner (Chemical State) Plots

- Highlights the E_K of Auger peak,
 E_B of photoelectron peak, and the
 Auger parameter in a compact format.
- Useful tool to understand trends for a series of related compounds

Project Motivation

- Issues of reproducibility, consistency, and completeness in the literature
 - Only good data for Zn metal and Zn oxide

<u>Goal</u>: To provide **accurate**, **reproducible**, and **comprehensive** reference data to aid in the speciation of zinc compounds and minerals.

Standard Samples – Zn 2p_{3/2}

- 27 zinc compounds and 13 cadmium compounds considered
- Limited Information available from this signal alone

Standard Samples – Zn LMM

• Larger amount of information available from this signal!

Wider energy range than $2p_{3/2}$

Characteristic shape \rightarrow Deconvolution

* To be completed

Wagner Plot

- Consider the zinc Wagner plot
- Each data point represents average over three triplicate measurements.

• Trends become easily observed

Mixed Species Systems

- Establishing method of curve fitting
- Consider the Zn L₃M₄₅M₄₅ signal for Metallic Zinc
- Series of individual peaks used to reproduce the $L_3M_{4,5}M_{4,5}$ envelope
- Proper peak constraints must be defined in order to maintain the integrity of this characteristic shape.

Constraints are key!

Curve Fitting Procedures

• Consider the $L_3M_{4,5}M_{4,5}$ signal for a series of Zn species —

- Development of the necessary information to replicate LMM peak shapes
- Information from counter ions and stoichiometry <u>must</u> also be considered to increase confidence!

Quantifying Changes in Surface Chemistry

• Company experiencing **cohesive failure** between coating layers due to excess oxide growth

Goal:

Modify conditioning stages to minimize oxide growth before paint and coating stages.

• Consider the surface of **hot dipped galvanized steel**:

Summary & Acknowledgments

- <u>Accurate speciation</u> of Zn and Cd with XPS should consider:
 - → Binding Energy of **Zn 2p_{3/2} / Cd 3d_{5/2}**
 - → Kinetic Energy of **Zn LMM / Cd MNN**
 - Modified Auger Parameters
 - Information from Counter lons
 - Survey quantification and stoichiometry
- Mixed species systems can be quantified using careful **peak fitting procedures**

