Conveners
(DTP) T2-2 Theoretical and Mathematical Physics | Physique théorique et mathématique (DPT)
- Hari Kunduri (McMaster University, Mathematics and Physics)
I will present our recent progress in designing algorithms that depend on quantum-mechanical resources – superposition, interference, and entanglement – for the solution of computational problems. Combined, these algorithms cover a large variety of challenging computational tasks spanning combinatorial optimization, machine learning, and model counting. First, I will discuss an algorithm for...
Biological systems need to react to stimuli over a broad spectrum of timescales. If and how this ability can emerge without external fine-tuning is a puzzle. This problem has been considered in discrete Markovian systems where results from random matrix theory could be leveraged. Here, a generic model for Markovian dynamics with parameters controlling the dynamic range of matrix elements via...
We show how thin wall magnetic monopoles can exist in a false vacuum, hence the name false monopoles, and how they can trigger the decay of the false vacuum.
In physics, Spacetime is always assumed to be a smooth $4-$manifold with a fixed (standard) differential structure. Two smooth $n-$manifolds are said to be exotic if they have the same topology but different differential structures. S. Donaldson showed that there exist exotic differential structures on $\mathbb{R}^4$. In the compact case, J. Milnor and M. Kervaire classified exotic...
A generally covariant gauge theory is presented which leads to the Gauss constraint but lacks both the Hamiltonian and spatial diffeomorphism constraints, and possesses local degrees of freedom. The canonical theory therefore resembles Yang-Mills theory without the Hamiltonian. We describe its observables, canonical quantization, and some generalizations.