Active matter is a term used to describe matter that is composed of a large number of self-propelled active ‘particles’ that individually convert stored or ambient energy into systematic motion. Examples include a flock of birds, a school of fish, or at smaller scales a suspension of bacteria or even the collective motion within a human cell. When viewed collectively, active matter is an...
Enzymes are valuable because they can catalyze reactions by binding transiently and greatly enhance the reaction probability for "substrate" molecules to convert to "product" molecules. But do they receive a physical kick while this reaction is proceeding? This would make them substrate-driven nanometers, or nanoscale active matter. Numerous fluorescence-based measurements (and a few others)...
In recent years, there has been a surge of interest in minimally invasive medical techniques, with magnetic micro-robots emerging as a promising avenue. These microrobots
possess the remarkable ability to navigate through various mediums, including viscoelastic and non-Newtonian fluids, thereby facilitating targeted drug delivery and medical interventions. However, while many existing designs...
Molecular motors are nanoscale machines capable of transducing chemical energy into mechanical work. Inspired by biology, our transnational team has conceived different designs of artificial motors comprised of protein building blocks – proteins, because these are Nature's choice of such functional units. We have recently characterized the motility of one of these designs – the Lawnmower – and...