

Status of the R2D2 cylindrical TPC R&T

F. Piquemal (CNRS/IN2P3)

R&D R2D2 collaboration

PAUL Symposium – Paarl (South Africa) – January 2024

- ➢ Nature of neutrino: Dirac or Majorana
- Neutrino mass hierarchy
- Absolute neutríno mass
- Right-handed current interaction
- \blacktriangleright CP violation in leptonic sector
- > Search of Supersymetry

Neutrinoless Double beta decay observables

F. Piquemal - Status of R2D2 R&T - PAUL

Symposium 2024

Light neutrino exchange

•Phys.Rev.Lett. 130 (2023) 5, 051801

The main issue : the background from natural radioactivity

List of other sources of background (non exhautive):

- Muons (underground labs)
- γ from (n, γ) reactions
- γ from μ bremstrahlung
- Muon spallation products
- $\boldsymbol{\diamondsuit} \ \alpha \ \text{emitters}$ from bulk or surface contaminations for calorimeters
- * $\beta\beta(2\nu)$ if modest energy resolution

The issue is to select materials

2 μBq/Kg in ²⁰⁸Tl correspond to about 20 decays/year Large number of measurements Each component and each batch has to be screened Large number of samples, long time of measurement

R2D2 strategy toward a ton scale experiment free of background

Objective : to design an experiment able to cover IO hierarchy ($m_{\beta\beta}$ < 10 meV)

High pressure xenon TPC R2D2 R&D program

R2D2 strategy

Test Facility at LP2i Bordeaux (no radiopurity consideration)

Spherical TPC strategy

Proposed by I. Giomataris et used in NEWS dark matter search experiment

Simulation

Pulse Ad 175 Raw signal * 5 50 Current Raw threshold * 5 ____ Ма Deconv. signal 150 --- Deconv. threshold Amplitude (ADU) / (RC * fe) 40 125 Rt 100 30 A.U. 75 Ct 50 20 Dt 25 10 0 1900 2000 2100 2200 2300 2400 2500 1800 Sample 0 1153.8 1201.9 865.4 913.5 961.5 1009.6 1057.7 1105.8 0 20 40 60 80 100 (μs) t [µs]

Signal

9

No impact of track length on the resolution Use of α source 3-4 cm at 1.1 bar 15 – 20 cm at 200 mbar

Proportional mode

Resolution with ArP2

Detection of light with pure Argon

-400

-200

SiPM signal X5

200

0

NIM A Volume 1028, 1 April 2022, 166382

600

800

time sample [μ s]

1000

400

Pecificulation on Recirculation on Recirculation on Recirculation on Recirculation on Recirculation on Recirculation on Time (s)

Outcome of SPC R&D

- Recirculation gas system
- Xenon recovery system
- Simulation validation
- Signal treatment

Limitation from noise on the anode when HV increased

Pressure limit 10 bars for hot getter Xenon : pressure limit 6 bars from recovery system

Cylindrical TPC : First test

- Inox Tube: 1m50 x 40cm Ø.
- Copper cathode: 1m x 35 cm ø.
- Tungsten anode: 50 μm Ø.
- ²¹⁰Po source.

 $\alpha~$ energy altered by distorsion of electric field near hole and possible interaction at the edge of the hole

Resolution : ~ 1.5 % (FWHM) in Ar at 1.1 bar and E α = 5.4 MeV

F. Piquemal - Status of R2D2 R&T - PAUL Symposium 2024

Cylindrical TPC : ionization mode

Dt : total duration of signal → direct measurement of the maximum radial distance from the track to the anode

Dh: width of the signal S at half height \rightarrow linked to to the radial extent of the track

Publication in preparation

Cylindrical TPC : ionization mode

Measurement of the radial position of the event (remove background from the sides)

Position along the wire can be obtained reading signal of both sides of the wire

- Similar resolution for Ar et Xe
- \succ Similar results for α source on the cathode or on the volume (radon)
- Limited by purity of the gas (outgasing of the device)
- Limitation from electronics noise (not optimised for ionisation mode)

Study of the possibility to use a vessel based on the principle of H tanks : High pressure device (700 bars)

Thin (few mm) \rightarrow limited amount of matter

The issue is the background : contact with some companies and we started to measure radiopurity of some materials

(Natural radioactivity : ~ Bq/kg in U and Th \rightarrow 10⁻⁶ – 10⁻⁸ Bq/kg in U and Th to reach zero background)

Status of the R2D2 R&D

The objective is to develop a ton-scale experiment to cover IO hierarchy.

- **Q** Results on the energy resolution are very promising
- **Capability to localise the place of the decay**
- **Use of Ar gas to check radiopurity of the full detector**
- □ A challenge : the identification of 2 e⁻ at high pressure (> 20 bars)
- **Development to try to produce low radioactivity composite vessel**
- Development of a dedicated low noise electronics including embedded AI on FPGA to work in ionisation mode
- □ Improvement of the prototype to reach 40 bars

D Possibility to duplicate the detector in several deep underground laboratories

