Direct-Detection of Sub-GeV Dark Matter: A New Frontier

Rouven Essig

C.N. Yang Institute for Theoretical Physics, Stony Brook, USA

Symposium on Science at PAUL, January 16, 2024

About me

- Born and grew up in Johannesburg, South Africa
- undergraduate at Wits University 1998-2002
- went to USA for PhD & postdoc
- Faculty @ Stony Brook U. in New York since 2011
- Particle theorist, but work with many experimentalists (e.g., co-spokesperson of SENSEI)

Direct-Detection of Sub-GeV Dark Matter: A New Frontier

An opportunity for PAUL?

Direct-Detection of Sub-GeV Dark Matter: A New Frontier

 $\gg 100$ papers over past few years

will give brief, incomplete overview, and focus on one example (SENSEI)

Some Current Constraints & Projections

 LZ, XENONnT, and PandaX w/ <u>multi-ton</u> detectors are dominating search for WIMPs

 Constraints are weak, event rates are potentially large, and <u>small</u> experiments can search for DM

 Constraints are weak, event rates are potentially large, and <u>small</u> experiments can search for DM

- Constraints are weak, event rates are potentially large, and <u>small</u> experiments can search for DM
- <u>But</u> need ultrasensitive detector & control over "new" backgrounds

Kinematics of sub-GeV DM scattering

Elastic WIMP-nucleus scattering

Elastic WIMP-nucleus scattering

at low DM masses, very little energy transfer

Available DM kinetic energy is much larger!

Available DM kinetic energy is much larger!

Can transfer entire DM kinetic energy in *inelastic* scatters

• DM-e scattering

RE, Mardon, Volansky

Can transfer entire DM kinetic energy in inelastic scatters

• DM-e scattering

RE, Mardon, Volansky

• DM-N scattering via Migdal effect

> Migdal; Vergados & Ejiri; Bernabei; Ibe, Nakano, Shoji, Suzuki

 DM scattering w/ collective modes (e.g. optical phonons)

Knapen, Lin, Pyle, Zurek

Various target materials w/ various excitation energies, e.g.

R. Essig, "The low-mass dark matter frontier," Physics 13, 172, 2020

Various target materials w/ various excitation energies, e.g.

signal consists of one to a few electrons

Exciting experimental progress in past decade: e.g., DM-electron scattering

RE, Manalaysay, Mardon, Sorensen, Volansky

Exciting experimental progress in past decade: e.g., DM-electron scattering

RE, Manalaysay, Mardon, Sorensen, Volansky

many collaborations!

Exciting experimental progress in past decade: e.g., DM-electron scattering

many collaborations!

several ultrasensitive detectors can measure the produced charge (2-phase TPCs, Skipper-CCDs, TES,...)

Discuss one example:

SENSEI

silicon Skipper-CCDs (bandgap $\sim 1 \text{ eV}$)

can probe ~MeV DM

The SENSEI Collaboration

Fermilab

Ana Botti Gustavo Cancelo Fernando Chierchie Michael Crisler Alex Drilca-Wagner Juan Estrada Guillermo Fernandez Nathan Saffold Miguel Sofo-Haro Leandro Stefanazzi Kelly Stifter Javier Tiffenberg* Sho Uemura

Steve Holland

Liron Barak Yonathan Ben Gal Miguel Daal Erez Etzion Yonathan Kehat Yaron Korn Aviv Orly Tomer Volansky*

Itay Bloch

+ Timon Emken + Silvia Scorza + Hailin Xu Stony Brook University

> Prakruth Adari Rouven Essig* Aman Singal Yikai Wu

UNIVERSITY OF OREGON

Ansh Desai Tien-Tien Yu universidad de buenos aires - exactas departamento de física Juan José Giambiagi

Mariano Cababie Santiago Perez Dario Rodrigues

lan Lawson Steffon Luoma

*spokespersons

SENSEI detection concept

DM would create one or a few electron-hole pairs in a pixel

 $\sim 2 \text{ cm} \times 10 \text{ cm}, 5.4 \text{ Mpix}$

 $\sim 2 \text{ cm} \times 10 \text{ cm}, 5.4 \text{ Mpix}$

designed at LBNL and fabricated at Teledyne DALSA Semiconductor

SENSEI has two DM detectors operating

@Fermilab (near Chicago)

@SNOLAB, Canada

- ~100 m underground
- some lead shielding

- ~2,000 m underground (no muons)
- better shielding

Dark Matter Results from SENSEI

SENSEI@Fermilab: three science runs

- 1 prototype Skipper-CCD (0.0947 gram)
 - 2018: surface
 - 2019: ~100m underground
- 1 science-grade Skipper-CCD (1.925 gram)
 - 2020: ~100m underground

1804.00088, PRL

1901.10478, PRL, Editor's suggestion

2004.11378, PRL, Editor's suggestion

SENSEI@SNOLAB: one science run

- 6 science-grade Skipper-CCDs (~12 gram)
 - 2023: ~2,000m underground

2312.13342, submitted to PRL

Example of Results

- Leading constraints for several dark matter models
- orange line: "freeze-in DM"

RE, Mardon, Volansky, 2011 Chu, Hambye, Tytgat, 2011 RE, Fernandez-Serra, Soto, Mardon, Volansky, Yu 2015 Dvorkin, Lin, Schutz, 2019

• Detector upgraded, next science run ongoing

Exciting Skipper-CCD program ahead

- SENSEI: ~100 gram (SNOLAB)
- DAMIC-M: ~1 kg (Modane, ~2024)
- Oscura: 10 kg (R&D funded, ~2026)

Summary: an opportunity for PAUL?

- Direct detection of dark matter is a vibrant field
- PAUL will not compete with "big" (ton-scale) experiments searching for WIMPs (XENONnT, LZ, PandaX, DarkSide...)
- BUT: small "inexpensive" experiments with ultrasensitive detectors and small collaborations (~10-30 scientists) can search for "sub-GeV" dark matter and produce world-leading science (discussed one example: SENSEI)
- Excellent training ground for students; exposure to the many aspects needed to create a successful experiment; any one person can have a big impact
- Fast-moving, dynamic field
- How best to attract interested groups?

Thank you

Some references providing summaries & overviews

- RE, Mardon, Volansky, "Direct Detection of Sub-GeV Dark Matter," Phys. Rev., D85, p. 076007, 2012, arXiv: 1108.5383
- M. Battaglieri et al., "US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report," arXiv: 1707.04591
- Report of the Workshop "Basic Research Needs for Dark Matter Small Projects New Initiatives" is available online at: https://science.osti.gov/-/media/hep/pdf/ Reports/Dark_Matter_New_Initiatives_rpt.pdf
- R. Essig, "The low-mass dark matter frontier," Physics 13, 172, 2020
- Y. Kahn and T. Lin, "Searches for light dark matter using condensed matter systems," arXiv:2108.03239
- R. Essig et al., "Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade," in Snowmass 2021, arXiv: 2203.08297

Many challenges remain, and much remains to be done...

e.g.

- Understand (novel) low-energy backgrounds
- Increase detector sensitivity & target mass
- Understand/calibrate detector response to dark matter

More SENSEI results

2312.13342

10⁻³³ **ProtoSENSEL@MINOS** protoSENSEI@MINOS Dark Matter – Electron Cross Section [cm²] Cross Section [cm²] Solar-reflected DM 10^{-34} (dark-photon mediator) SENSEI@MINO! 10⁻³⁴ DAMIC-M 10⁻³⁵ 10⁻³⁵ 10-36 Electron Solar-reflected DN (dark-photon mediato 10⁻³⁷ 10⁻³⁶ Freeze-in 10⁻³⁸ Dark Matter 10⁻³⁷ DarkSide50 10⁻³⁹ Benchmark Models XENON1T-S20 $F_{\rm DM} = (\alpha m_e/q)^2$ $F_{\rm DM}=1$ 10⁻⁴⁰ 10⁻³⁸ 10^{-2} 0.1 10 10² 10 10² 10^{3} 10^{3} DM mass [MeV] DM mass [MeV] 10⁻¹¹ 10^{-27} SuperCDMS-CPD protoSENSEI@Surface Dark Matter – Nucleon Cross Section [cm²] 10⁻²⁸ DarkSide50 (elastic) protoSENSEI 10⁻²⁹ solar 10-12 @MINOS 10⁻³⁰ SENSEI 10⁻³¹ CRESST-III (elastic) **@MINOS** SENSEIESNOLAB SENSEIESNOLAB 10^{-13} 10⁻³² 10⁻³³ 10⁻³⁴ 10⁻¹⁴ 10⁻³⁵ XENON10 10⁻³⁶ XENON17 (SE) 10^{-15} 10-37 Migdal XENON10 Limits Dark photon DM 10-38 absorption $F_{\rm DM}=1$ 10⁻³⁹ 10^{-16} 10 10² 10³ 10 DM mass [MeV] $m_{A'}$ [eV]