Measuring the neutron fields within Paarl Africa Underground Laboratory

Zina Ndabeni

Peane Maleka, Andy Buffler, Tanya Hutton

SSP2024 (Paarl Africa Underground Laboratory): 14 – 18 January, Du Kloof Lodge, Du Toitskloof Mountains

Existing facilities

Laboratory for Accelerator Based Sciences

National Laboratory

200 MeV cyclotron

Fast neutron beam facility at iThemba LABS

Development towards an ISO-accredited reference facility

D-Line Standard Detector

$2'' \times 2''$ BC501A liquid scintillation detector

 Excellent pulse shape discrimination (PSD) properties.

- Fast timing performance.
- Well characterised.

Time-of flight measurement of neutrons produced by a 66 MeV proton beam irradiating a 5.0 mm ^{nat}Li target. (Measurements at 6.00 m from the target at 0°).

Quasi-monoenergetic neutron beams at iThemba LABS

Neutron energy (MeV)

n-lab Reference Detector

50 mm x 50 mm cylindrical EJ-301 Liquid Scintillator

- PSD properties to exclude gamma rays
- Well characterised

dDAQ for measurements

CAEN Vx1761 10 bit, 4.0 GS/s 1.0 V_{pp}

or

CAEN DT5730 14 bit, 0.5 GS/s 0.5-2.0 V_{pp}

- QtDAQ software (designed and developed at UCT)
- Data written in list mode for off-line processing

Typical Neutron Background Measurements in the ULs: (Possibility for PAUL...?)

Neutron Background UL

 In the ULs, neutrons are from muon induced secondary particles, spontaneous fission and (α, n) reactions

Underground	Depth	Thermal neutron flux	Fast neutron flux	References
lab	(m.w.e)	(cm ⁻² s ⁻¹)	(cm ⁻² s ⁻¹)	
CPL	1000	No data	(3.00±0.02±0.05)×10 ⁻⁵	Kim H J et al ^[14]
YangYang	2000	(2.42±0.22)×10 ⁻⁵	8×10 ⁻⁷	Park H et al. ^[15] ;Lee H S et al. ^[16]
Soudan	2090	(0.7±0.08±0.08) ×10 ⁻⁶	No data	Best A et al ^[17]
Canfranc	2450	(1.13±0.02) ×10 ⁻⁶	(0.66±0.01)×10 ⁻⁶	Jordan D et al. ^[13]
Boulby	2800	No data	$(1.72\pm0.61\pm0.38) imes10^{-6}$	Tziaferi E et al. ^[18]
Gran Sasso	3600	(1.08±0.02) ×10 ⁻⁶	(0.23±0.07)×10 ⁻⁶	Belli P et al. ^[19]
Modane	4800	(1.6±0.1)×10 ⁻⁶	(4.0±1.0)×10 ⁻⁶	Chazal V et al. ^[20]
CJPL	6720	(4.00±0.08)×10 ⁻⁶	No data	Zeng Z M et al.[9]
CJPL	6720	(7.03±1.81)×10 ⁻⁶	(3.63±2.77)×10 ⁻⁶	This study

Table adopted from (Q. Hu, et al., Nucl. Instrum. Meth. A 859 (2017) 37)

PAUL: \sim 800 m of rock overburden

Popular neutron detectors/instruments

For ULs..., the neutron spectra (+flux) needs to be known and continuously monitored!

 A gaseous ³He proportional ionization chamber enables determination of <u>thermal neutron flux</u>.

2. Gadolinium doped plastic scintillators / Gadolinium-loaded liquid scintillator (Gd-LS) allow for detection of the *fast neutron background* via delayed coincidence of proton recoils followed by thermal neutron capture.

3. A multiple Bonner sphere neutron spectrometer, with ³He ionization chambers enclosed in polyethylene shielding of varying thickness, for neutrons up to 20 MeV energy (i.e. *useful for both thermal and fast neutrons*).

Relevance of iTL + UCT... to PAUL

 ONGOING PROJECT: Upgrade of iTL fast neutron beam facility towards neutron metrology compliance (iTL, UCT, NMISA; IRSN; NPL; PTB)

......iTL fast neutron beam facility with reliable neutron beam monitoring and neutron beam characterisation traceable to PTB standards (Mosconi et al., 2010).

- Possibility of neutron detector/instruments testing and/or calibrations.
- Available neutron fields: <u>Thermal fast neutrons (</u>UCT n-Lab)
 <u>Fast (</u>iTL D-line)

- Neutron spectra unfolding (response functions)
- Monte Carlo simulations

Measurement Campaign at iThemba LABS using HERMEIS Bonner Sphere Spectrometer system

#1 - #5 indicate the five measurement positions in the D-line vault

Bonner Sphere Spectrometer system: HERMEIS

Summary

 Facilities at iTL and UCT are available to contribute to the development of instruments required for PAUL.

• There is ongoing detector development and instrumentation dedicated to neutron physics.

• Human capacity development on neutron science at iTL is also necessary.

n lab

 $M_{I}e_{I}A_{I}S_{I}U_{I}R$ е Metrological and Applied Sciences University Research Unit

