Relativistic electrodynamics in a medium

Anslyn J John

Department of Physics Stellenbosch University, South Africa

<anslyn@sun.ac.za>

16 January 2024

NITheCS

National Institute for **Theoretical and Computational Sciences**

Anslyn J John (Stellenbosch) [Relativistic EM in a medium](#page-7-0) 16 January 2024 1/8

 $\left\{ \left\vert \varphi\right\vert \left\vert \varphi\right\vert \left\langle \varphi\right\vert \left\vert \varphi\right\vert \left\langle \varphi\right\vert \left\vert \varphi$

Electromagnetism

Unification of electricity and magnetism by Maxwell:

$$
\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \tag{1a}
$$

$$
\nabla \cdot \mathbf{B} = 0 \tag{1b}
$$

$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$
 (1c)

$$
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}
$$
 (1d)

• The Lorentz force law,

$$
F = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{2}
$$

• The classical behaviour of E and B fields in a vacuum is governed by [\(1\)](#page-1-0) and [\(2\)](#page-1-1).

Anslyn J John (Stellenbosch) [Relativistic EM in a medium](#page-0-0) 16 January 2024 2/8

イロト イ押ト イヨト イヨト

 200

EM in Special Relativity

- Maxwell's equations are Lorentz-invariant.
- Introducing the field strength tensor, $F_{\mu\nu}$, eqns. [\(1\)](#page-1-0) are equivalent to

$$
\partial_{\mu}F^{\mu\nu} = 4\pi J^{\nu} \tag{3a}
$$

$$
\partial_{\mu}F_{\nu\sigma} + \partial_{\nu}F_{\sigma\mu} + \partial_{\sigma}F_{\mu\nu} = 0 \tag{3b}
$$

• $F_{\mu\nu}$ is defined in terms of the four–potential, A_{μ}

$$
F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{4}
$$

The electric and magnetic fields are obtained via,

$$
E^{\mu} = F^{\mu\nu} u_{\nu} \tag{5a}
$$

$$
B^{\mu} = -\frac{1}{2} \epsilon^{\mu\nu\lambda\rho} u_{\nu} F_{\lambda\rho}
$$
 (5b)

• The field strength tensor has the equivalent form,

$$
F^{\mu\nu} = E^{\mu} u^{\nu} - E^{\nu} u^{\mu} + \epsilon^{\mu\nu\lambda\rho} B_{\lambda} u_{\rho}
$$
\n
$$
\sum_{\alpha = \alpha + \alpha \beta + \alpha \beta + \alpha \beta + \alpha \beta + \beta \gamma = \beta} (6)
$$

Anslyn J John (Stellenbosch) [Relativistic EM in a medium](#page-0-0) 16 January 2024 3/8

EM in a medium

- In a material medium, one must distinguish between bound and free charges and currents.
- The *inhomogeneous* Maxwell's equations are modified:

$$
\nabla \cdot \mathbf{D} = \rho_f \tag{7a}
$$

$$
\nabla \cdot \mathbf{B} = 0 \tag{7b}
$$

$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$
(7c)

$$
\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}
$$
(7d)

• We introduce the fields,

$$
D = \epsilon_0 E + P
$$
 (8a)

$$
H = \frac{1}{\mu_0} B - M
$$
 (8b)

ミドマミド

 200

EM in Special Relativity in a medium

- Are Maxwell's equations in a medium Lorentz-invariant?
- The constitutive relations [\(8\)](#page-3-1) are certainly not.
- Define new four-vectors.

$$
D^{\alpha} \equiv \epsilon E^{\alpha}
$$
 (9a)

$$
H^{\alpha} \equiv \frac{1}{\mu} B^{\alpha}
$$
 (9b)

• Introduce a 'dielectric field strength tensor',

$$
G^{\mu\nu} \equiv D^{\mu}u^{\nu} - D^{\nu}u^{\mu} + \epsilon^{\mu\nu\lambda\rho}H_{\lambda}u_{\rho}.
$$
 (10)

EM in Special Relativity in a medium

The inhomogeneous Maxwell equations in a medium in special relativity are now,

$$
\partial_{\mu} G^{\mu\nu} = \frac{1}{c} J^{\nu}_{\text{free}} \tag{11}
$$

- These are sourced by the *free* 4-current densities. Note the non-trivial relation between $F^{\mu\nu}$ and $G^{\mu\nu}$.
- Eqn. [\(11\)](#page-5-0) can be derived from the Lagrangian,

$$
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} G^{\mu\nu} - \frac{1}{c} J_{\text{free}}^{\mu} A_{\mu} \tag{12}
$$

• The EM stress tensor in a medium is

$$
T^{\mu\nu} = -\eta_{\alpha\beta} F^{\mu\alpha} G^{\nu\beta} + \frac{1}{4} F_{\alpha\beta} G^{\alpha\beta} \tag{13}
$$

Applications

- Magnetised neutron stars; General-relativistic EM in a medium
- **Cerenkov radiation from charged particles**
- Magnetic monopole interactions
- Dark matter in compact stars
- Milli-charged dark matter

イロト イ押ト イヨト イヨト

э

References

- **1** Maugin, G.A., 1978. On Maxwell's covariant equations in matter. Journal of the Franklin Institute, 305(1), pp.11-26.
- 2 Pal, P.B., 2021. Covariant formulation of electrodynamics in isotropic media. European Journal of Physics, 43(1), p.015204.
- ³ Padmanabhan, H., 2009. A simple derivation of the electromagnetic field of an arbitrarily moving charge. American Journal of Physics, 77(2), pp.151-155.

イロト イ母ト イヨト イヨト