

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

Low neutron flux detectors and an active muon veto system for underground laboratories

Daniya Zinatulina

zinatulina@jinr.ru

Dzhelepov Laboratory of Nuclear Problems Experimental Department of Nuclear Spectroscopy and Radiochemistry (EDNSR)

> Symposium on Science @ PAUL 17 January 2024

Overview

- A classical method of neutron measurements with ³He-counter
- Neutron measurements with solid state scintillators (Nal, Csl, Nal (Tl+Li))
- Fast neutrons measurements with ³He-counter
- A plastic active muon veto system

Giving new life to old equipment. F. Barradas-Solas . Physics Education 2007, V. 42, N. 1, P. 9-11. DOI 10.1088/0031-9120/42/1/F03

Neutron-induced background

Neutrons can produce exactly the same signature as dark matter or neutrinos.

Neutron sources in nature

- 1. Low energy neutrons induced by U/Th fission and (α,n) reactions in the surrounding rock/concrete or in detector shield
- 2. High energy neutrons induced by muons

Fight with neutron background:

- 1. Go underground laboratory / reduce neutron flux by 4+ orders
- 2. Material selection
- 3. Muon veto system
- 4. Passive neutron shield
- 5. Multi-detector assembly
- 6. Neutron-induced background identification
- 7. Neutron fluxes measurements and characterization.

Neutron flux at LSM

Neutron flux at LSM

Thermal neutron flux, 10^{-6} n/cm ² /sec						
Point	Year	Counting rate at ROI, cpd	Thermal neutron flux, 10 ⁻ ⁶ n/cm ² /sec			
	2008	76.8 ± 1.5	3.64 ± 0.07			
1	2012	78.2 ± 2.3	3.72 ± 0.11			
	2011	74.35 ± 0.6	3.54 ± 0.03			
n	2008	97.7 ± 9.3	4.7 ± 0.5			
Z	2012	106.1 ± 7.3	5.1 ± 0.4			
2	2008	130.7 ± 12.2	6.3 ± 0.6			
3	2012	148.2 ± 12.3	7.1 ± 0.6			
Λ	2008	43.3 ± 4.0	2.1 ± 0.2			
4	2012	59.7 ± 4.5	2.9 ± 0.2			
F	2008	94.7± 9.7	4.5 ± 0.5			
5	2012	112.1 ± 7.5	5.3 ± 0.4			
C	2008	43.3 ± 4.0	2.1 ± 0.2			
6	2012	59.7 ± 4.5	2.9 ± 0.2			
7	2008	43.3 ± 4.0	2.1 ± 0.2			
/	2012	59.7 ± 4.5	2.9 ± 0.2			
0	2008	43.3 ± 4.0	2.1 ± 0.2			
õ	2012	59.7 ± 4.5	2.9 ± 0.2			
9	2012	93.3 ± 5.1	4.4 ± 0.3			
10	2012	86.1 ± 5.4	4.1 ± 0.3			
11	2013	76.13 ± 5.0	3.63 ± 0.24			
12	2013	207.09± 7.1	9.86 ± 0.34			
14	2013+PE	200.81± 1.6	9.56 ± 0.08			

³He-counters and the need for an alternative

- Gas proportional detectors
- Golden standard for neutron measurements
- Thermal neutron cross section of ³He = 5333±7 barns
- n+ ${}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{keV}$
- Negligible sensitivity to gamma rays
- Increased gas pressure per volume \rightarrow more sensitive detector

Drawbacks:

- ³He proportion in natural He gas=0,000137 %
- Artificially produced from tritium decay in nuclear reactors
- Low availability
- Costs up to \$2,000/L
- Not only needed for neutron detection
- Limited export of ³He

³He-counter spectrum

Motivation of neutron measurements with NaI(TI), CsI(TI), CsI(Na), CsI scintillation detectors

- widely available,
- simple to use,
- relatively cheap,
- relatively easy to produce,
- can be very radioactive clean,
- highly efficient for γ- detection (multipurpose)

New method:

Nal (solid) has **545** times as many moles as an equal volume of ³He (gas, normal pressure)

lodine has only one stable isotope: ¹²⁷I $\sigma_v = 6.2(2)$ barn (860 times lower than ³He)

Efficiency of thermal neutron capture in 1 kg NaI detector is ~50% (almost all captures will be on iodine because for ²³Na: σ_{γ} = 0.9(1) barn)

Result of neutron capture is ¹²⁸I in 6.8 MeV excited state

	Detector	Neutrons	Short Description
	Nal(Tl)	thermal	boron lining with available NaI detectors
	Nal(Tl)	thermal	high-energy photons following (n,γ) reaction on ^{23}Na
Nal(Tl) thermal triple β - γ - γ coincidences in following (n, γ) reaction on ²		triple β - γ - γ coincidences in two detectors following (n, γ) reaction on ²³ Na	
	NaI(TI)	thermal	activated NaI detector(¹²⁸ I β -decay, T _{1/2} = 25min and ²⁴ Na β -decay, T _{1/2} = 15h)
	CsI(Na)	fast	57.6 keV signal from ¹²⁷ I(n,n')inelastic scattering
	Nal(Tl), Csl(Tl)	fast	1-200 MeV neutrons, (n,p) and (n,α) reactions, pulse-shape discrimination

Description of the method

- ¹²⁸I decay to the ground state proceeds through a series of low-energy levels
- ¹²⁸I has 137.8 keV isomeric state
- $T_{1/2} = 0.845(20) \,\mu sec$
- ~40% de-excitations pass through the 137.8 keV level
- Delayed coincidences to identify neutrons

¹²⁸I excited energy levels below 200 keV and their decay transitions

Energy level in ¹²⁸ I (keV)	T 1/2 (ns)	Energy levels following decay (keV)
180		160.8, 85.5, 27.4
167.4	175 ± 15	137.8
160.8		27.4, 0
151.6		85.5, 27.4
144.0		133.6
137.8	845 ± 20	133.6, 85.5
133.6	12.3 ± 0.5	85.5, 27.4, 0
128.2		85.5
85.5		27.4
27.4		0
0		

Yakushev E. et al. Sensitive neutron detection method using delayed coincidence transitions in existing iodine-containing detectors // Nucl. Instrum. Methods Phys. Res., Sect. A. 2017. Vol. 848. P. 162–165. https://doi.org/10.1016/j.nima.2016.12.022

The results of measurements of the ambient neutron flux in LSM (Modane, France)

Nal(Tl) Diameter 63 mm Length 63 mm ~720 grams

PMT
Hamamatsu R6091
CAEN
Multi channel analyzer DT5780

Shield Simple Cu+Pb shield near EDW-I

Calibrations

γ : Th + K(internal) Neutron : AmBe (20 n/sec) Simultaneous measurement with low-background ³He detector CHM-57

The results of measurements with AmBe source in LSM (Modane, France)

Ponomarev, D.V. et al. Measuring Low Neutron Fluxes at the Modane Underground Laboratory Using Iodine-Containing Scintillators// Instrum Exp Tech 62, 309–311 (2019). https://doi.org/10.1134/S0020441219030084

_ ADC channels ⊥∪

800

500

600

700

400

Fast neutron detection with bare ³He counter

Cross sections of neutron capture and elastic scattering of ³He

 $n + {}^{3}He \rightarrow t + p + (764 \text{ keV} + E_n)$

- 3 He(n,p) cross section for the neutrons with energies 100 keV to 10 MeV is ~1 barn.
- The ability to detect fast neutrons with a ³He counter whose intrinsic background close to 0.

Augier C. et al. Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor // The European Physical Journal C. 2023. Vol. 83. P. 20. https://doi.org/10.1140/epjc/s10052-022-11150-x

Fast neutron measurements with AmBe source

Augier C. et al. Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor // The European Physical Journal C. 2023. Vol. 83. P. 20. https://doi.org/10.1140/epjc/s10052-022-11150-x

Muon veto panel

11111

The final view of an active muon veto module Dimensions: 220 x 51 x 4 cm

> Low voltage power supply (±5 VDC & +12 VDC) Thresholds adjustment avaliability Signal outputs:

- PMT direct output
- Preamp output
- 2 × logical (NIM) outputs

GERDA setup location

Muon veto panels layout

Count rates & performance

Coincidence modes crosscheck

No	Single, Cnt/s	Double, Cnt/s		Triple, Cnt/s			
Nº		Coinc.	Anticoinc.	Sum	Coinc.	Anticoinc.	Sum
18	262.3	164.6	96.3	260.9	147.2	113.7	260.9
19	225.5	162.3	63.2	225.5	147.6	79.5	227.1
20	274.2	162.6	109.9	272.5	147.9	125.1	272.9
21	207.9	163.4	44.8	208.2	147.1	60.9	208.1

Count rates & performance

Efficiency measurements

Efficiency of muon detection for a panel corresponds to **99,75 ± 0,18 %**

Efficiency of registration for the double coincidence mode is **99.50 ± 0,25 %**

Efficiency of registration for the triple coincidence mode is **99.25 ± 0,31 %**

Freund F K., Falkenstein R., Grabmayr P., Hegai A., Jochum J., Knapp M., Lubsandorzhiev B., Ritter F., Schmitt C., Schütz A.-K., Zhitnikov I., Shevchik E., Shirchenko M., Zinatulina D. The performance of the Muon Veto of the GERDA experiment // Eur. Phys. J. C. 2016. V. 76. P. 298.

Conclusions:

- The new method of neutron detection with existing iodine containing scintillators allow to measure low flux of thermal neutrons;
- For low background environment 10⁻⁸ n cm⁻² sec⁻¹ neutron flux could be possible to measure with a bigger detector (~100kg);
- NalL detector is a promising detector for background measurements. Such the detectors together with their usual implementation for γ– measurements, can be highly efficiently applied for detection of neutrons with different energies. The three main reactions are ⁶Li(n,t)⁴He (thermal neutrons), ¹²⁷I(n,γ)¹²⁸I (epithermal neutrons), ¹²⁷I(n,n')¹²⁷I^{*} (fast neutrons).
- The low-background ³He proportional counter can be used to characterize the fast neutron fluxes if it's own BKG is low enough.
- Active muon veto system is very important for the low-backgournd experiments, not only shielding from cosmic muons but also as a veto for neutrons indused inside the experimental setup.

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

Low neutron flux detectors and an active muon veto system for underground laboratories

Daniya Zinatulina

zinatulina@jinr.ru

Dzhelepov Laboratory of Nuclear Problems Experimental Department of Nuclear Spectroscopy and Radiochemistry (EDNSR)

> Symposium on Science @ PAUL 17 January 2024

1. Yakushev E. et al. Sensitive neutron detection method using delayed coincidence transitions in existing iodine-containing detectors // Nucl. Instrum. Methods Phys. Res., Sect. A. 2017. Vol. 848. P. 162–165. https://doi.org/10.1016/j.nima.2016.12.022

2. Ponomarev, D.V. et al. Measuring Low Neutron Fluxes at the Modane Underground Laboratory Using Iodine-Containing Scintillators// Instrum Exp Tech 62, 309–311 (2019). https://doi.org/10.1134/S0020441219030084

3. Ponomarev D., et al. NaI(TI+Li) scintillator as multirange energies neutron detector // Journal of Instrumentation. 2021. Vol. 16, no. 12. P. 12011. https://doi.org/10.1088/1748-0221/16/12/P12011

4. Augier C. et al. Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor // The European Physical Journal C. 2023. Vol. 83. P. 20. https://doi.org/10.1140/epjc/s10052-022-11150-x

5. Freund F K., Falkenstein R., Grabmayr P., Hegai A., Jochum J., Knapp M., Lubsandorzhiev B., Ritter F., Schmitt C., Schütz A.-K., Zhitnikov I., Shevchik E., Shirchenko M., Zinatulina D. The performance of the Muon Veto of the GERDA experiment // Eur. Phys. J. C. 2016. V. 76. P. 298.

Dark Matter Detectors in UG Laboratories

WIMPs scatter off atoms in a detector -> detect the signal...

- event rate is ultra small;
- and (or) energy deposition is tiny

2 tasks for any modern experiment:

- 1) Maximize signal
- → big target (detector)
- 2) Minimize background
- → extreme low radioactive background requirements
- → Reduction and understanding of backgrounds

2 tasks for any modern experiment:

- Target (detectors) mass (i.e. expected number of "good" events)
- Reduction and understanding of backgrounds

backgrounds

- Cosmic rays and cosmic activation
- Ambient natural radioactivity
 - Radioactivity of materials
 - Radioactive dust

. . .

- Radioactive gases
- Exotic (neutrino induced background, etc)

detector(s)

- What parameters of a detector(s)? Energy threshold, good resolution(s), selection power
- Large volume 10 kg – 1 ton
- Efficient shielding, Underground lab, material selection, ...

Traditional methods for reduction of backgrounds

- Underground laboratory
- Low radioactive materials
 - Material selection
 - Clean rooms
 - Clean conditions, (include air) during all phases of the experiment
- Veto systems
- Multi layer passive and active shields (include shields from radioactive gases in air, from dust, etc)
 - New bigger detectors provides effective self-shielding

Shield/ underground

Primary cosmic rays composed essentially of all periodic elements:

- $\sim 89\%$ protons, $\sim 10\%$ helium nuclei
- ~1% heavy elements (C, O, Si, ...)
- At sea level, most are muons with mean energy at 4 GeV, but there are also much higher energies
- Also, about 20% are fast neutrons
- Only deep underground laboratories can provide effective shield from the cosmic

Neutron background sources underground:

Low energy neutrons induced by U/Th activities

- fission and (α,n) reactions in the surrounding rock/concrete
- fission reactions in detector shield

High energy neutrons induced by muons

Fight with neutron background:

- 1) Go underground laboratory / reduce neutron flux by 4+ orders
- 2) Material selection
- 3) Muon veto system
- 4) Passive neutron shield
- 5) Multi-detector assembly / neutron background identification

Test in Dubna

NaI(Tl) Ø63 mm x 63 mm PMT Hamamatsu R6091 CAEN Multi channel analyzer DT5780

Data acquisition in list mode

Simultaneous measurement with low-background ³He detector CHM-57

Energy scale calibration near 137 keV with 139 Ce (166 keV γ -line)

Strong PuBe neutron source (10^4 n/sec) to verify the effect

Measurements of ambient neutrons

Ambient neutron flux in JINR

Absolute sensitivity to thermal neutrons is 6.5 ± 1.0 counts sec⁻¹ for thermal 4π neutron flux 1 n cm⁻² sec⁻¹

Accidental background for this detector and shield is 0.8 events day⁻¹ for any delay time window at 1 µsec

NaIL detector and experimental setup

Size: 127х152мм

Resolution at 662keV of ${}^{137}Cs: \approx 6.7\%$

Natural Li concentration: $\approx 1\%$ of the number of atoms in the crystal

Density: 3.66 g/cm³

Shield: borated rubber + cm of lead

MCA: CAEN DT5725 with PSD firmware

Measurements with NaIL detector

0.42

5000

10000

15000

20000

25000

 6 Li(n,t)⁴He: For PSD two gates was used : Short gate- 350ns Long gate- 700ns α-background: Contamination by 238U chain, Approx. 170 events per day from ²¹⁴Po

127 I(n, γ) 128 I:

35000

30000

40000

Delay time window 0.9-10µs for neutron events Shifted delay window 10.9-20µs for background determination

Three ways to neutron detection with NaI(Tl+Li)

Ponomarev D., et al. NaI(TI+Li) scintillator as multirange energies neutron detector // Journal of Instrumentation. 2021. Vol. 16, no. 12. P. 12011. https://doi.org/10.1088/1748-0221/16/12/P12011

• Thermal neutron capture on Li-6:

 $^{6}\text{Li}+n_{\text{th}}\rightarrow ^{4}\text{He}+^{3}\text{H}+4.79 \text{ MeV}, \sigma=940 \text{ b};$

• Epithermal neutron capture on I-127:

 $^{127}\text{I+n}_{\text{th}} \rightarrow ^{128}\text{I}^*+6.8 \text{ MeV } \sigma_{\text{th}}=6.2 \text{ b},$ For the neutrons with the energies from 50 eV to 10 keV the integral of the resonances is 153.9 b;

• Inelastic scattering of fast neutrons on I-127 with excitation of 57.6 keV and 202.86 keV.

 E_n = 2.8MeV: σ_{57} =0.43 b, σ_{202} =0.16 b, E_n = 14.1MeV: σ_{57} =0.28 b, σ_{202} =0.11 b,

Panels of the active muon veto system

