

Dark matter searches and underground lab in Australia

Elisabetta Barberio The University of Melbourne Symposium on science at PAUL , Du Toikloof Mountains, South Africa

Annual modulation of WIMP DM

Particle physics

- Rare and low energy events
 - Expected σ (WIMP-nucleon) ~ 10⁻⁴⁸ ¹1⁵0⁻⁴⁰ cm²
 - Very low expected rate < 1 count/day/kg (few % of which modulates)
 - Expected recoil energy is 1-100 keV for a WIMP of mass 10-1000 GeV/c²

Modulating component ~ 2-10% of R(t)

- Expected DM phase 152.5 days
- Amplitude: (0.0103 ± 0.0008) cdp/kg/keV

Nal experimental landscape

SABRE @ LNGS COSINE @ Yangyang

COSINUS @ LNGS

3 **b**

DAMA @ LNGS

ASTAROTH @ LNGS

115

PICOLON @ Kamioka

SABRE @ Stawell

STAWELL UNDERGROUND PHYSICS LAB (SUPL)

https://www.supl.org.au

Stage 1 completed in August 2022

OPEN for BUSINESS

SUPL

1025 m deep (~2900 m water equivalent) with flat over burden • Helical drive access

SUPL

- Commissioning throughout 2023.
- First major equipment to be delivered in January 2024.
- SABRE collaborators commenced mine safety training (2 days on site, medical testing)

SUPL will provide

- 1. Self-rescuer
- 2. Cap lamp
- 3. Gloves
- 4. Ear protection
- 5. Safety glasses
- 6. SGM Information Card

Individual Researchers

Must have your own:

- 7. High-visibility clothing
- 8. Steel capped boots as specified by SGM.

SUPL or Individual Researcher

Miner's belt 9. 10. Miner's helmet

Inerodu lo SUPL

The "SUPL researcher" starter kit

Preparing for work in SUPL

- Actions to move equipment to SUPL
 - SUPL and SABRE Agreement
 - Delivery and installation
 - Planning
 - Arrival at SGM
 - Transport to SUPL
 - Off-loading at SUPL
 - Alloca
 - Equip
 - Servid
 - Undertak
 - Risk a
 - Stand
 - Work

Documents for approval to move equipment to SUPL

- Equipment register
- Task risk assessment
- Process risk assessments
- Approval to work at SUPL
- Standard operating procedures
- Work instructions
- Training, mine safety, heights, confined spaces etc.

Computing

• Located in the active Stawell Gold Mine, 240 km west of Melbourne, Victoria, Australia

Strong support of the local community

SUPL TIMELINE

- 2014 Lab proposed, Project Leaders E. Barberio (University of Melbourne), J. Mould (Swimburne)
- 2015 Federal Stronger Region grant to NGSC for the Lab design
- 2016 Lab design by WOOD ready
- 2017 Hiatus SGM in caretaker mode
- 2018 the project restart: ARETE capital acquires SGM
- 2019 construction starts by H.Troon (Ballarat)
- 2022 August SUPL finished and commissioning start
- 2023 December SUPL ready to be used
- 2024 January SABRE starts construction

THE HISTORY

A delegation of Italian scientists, visited SGM and suggested to build an underground laboratory to test the dark matter signal seen in Italy

SGM and NGSC enormously supportive and help to generate government funding for SUPL

STRONG SUPPORT FROM SGM

TRATA AUSTRALIA

MINE REFUGE CHAMBER WWSTRAMPRODUCTSCOM

100

6 PERSON

1-10-RC-15

COEPP

H.

SCHOOL ENGAGEMENT

 50% increase in STEM enrolments in Stawell and Ararat schools since SUPL announced;

Foster innovation culture and an entrepreneurial mindset with the help of the innovation lab @ Swinburne

Mobile of exp to en

Educate
Lessons on special relativity and subatomic physics
<text></text>

STRONG SUPPORT

We don't want you to just host the (SABRE) experiment; we w collaborators in the experiment

Stawer on Dark Mattatter

Prof. Sandro Bettini helped to set the requirements and help with the lab design

à

gradient fill

acronym only

OUTREACH AND MEDIA

LAB CONSTRUCTION

Stawell Underground Laboratory construction

Stawell Underground Laboratory construction

Stawell Underground Laboratory construction

Victoria State Government (Regional Development)

SUPL ltd. manages the lab

SUPL Capital Works Funding: Commonwealth Govt. Victoria Govt.

Operational Funding: SUPL Partners - UM, ANSTO, ANU, UA, Swinburne

Dr Sue Barrel (chair SUPL ltd.)

Running cost from university funding. Requested 17M for 5 years running cost from the federal government

SUPL: Future National Facility SABRE is initial Key experiment BUT also:

ANSTO low background Gamma spectroscopy facilities; Geology & biology experiments; Others ...

CoE Funding: Other DM experiments, Cygnus, Cryo exp.

Independent funding ~\$47M

ARC Centre of excellence for DM

- Prof Elisabetta Barberio director
- 7 years projects (midd-2020-midd-2027)
- 21 Chief investigators (Australian) over 6 Australian Universities (10 theorists, 10 experimentalists)
- 3 new academics (direct detection experimentalists)+ 1 position almost filled (direct detection experimentalist)
- 13 partner investigators (formal agreement) INFN, Caltec, Amsterdam, Washington, Stockholm, MIT, Sheffield; locally ANSTO and DSTG
- 30 associate investigators (less formal association) from many other countries
- 24 postdocs supported by the centre
- 100 students
- 14 admin staff supported by the centre

RESEARCH THEMES

Direct Detection

Metrology

WIMP-like, Axion-like

Nuclear and quantum techniques

Large Hadron Collider

Theory

Dark matter analyses

Indirect detection, astro simulation,

SABRE

- Two similar detectors in two underground locations in opposite hemisphere:
 - SABRE North at Laboratori Nazionali del Gran Sasso (LNGS) in Italy
 - SABRE South at Stawell Underground Physics Laboratory (SUPL) in Australia

Requirements for SABRE

- Main requirement outperform DAMA/LIBRA.

Table 1. Annual modulation in the 1-6 keV region reported by DAMA [2] [4] in units of DRU (cpd/kg/keV). The χ^2 /ndf for the global average is

Setup	Mass (kg)	Background (dru)	Modulation (dru)	Uncertainty (dru)
DAMA	250	0.8	0.0105	0.0011
COSINE	61.3	2.7	0.0064	0.0042
ANAIS	112.5	3.2	-0.0034	0.0042
Global average	_	_	0.0094	0.0010

					Table 3. Key perfect	ormance parameters of SABRE.
Table 2. Pur	$\frac{1}{39}$ (ppb)	$\frac{al(TI) \text{ crystals}}{238 \text{ II} (\text{ppt})}$	$\frac{232}{2}$ Th (ppt)	$\frac{210}{\text{Pb}}$ (mBa /kg)	Parameter	Value
DAMA / I IBBA [6]	12 I 2	$\begin{array}{c} 0 (\text{ppt}) \\ \hline 0 7 10 \end{array}$	05 75	$(30 - 50) \times 10^{-3}$	Light yield	$11.1 \pm 0.2 \text{ PE/keV} [10]$
ANAIS-112 [7]	31	< 0.81	0.3 - 7.3 0.36	$(30 - 30) \times 10$ 1.53	Energy resolution	13.2% (FWHM/E) at 59.5 keV [1]
COSINE-100 [8]	35.1	< 0.12	< 2.4	1.74	Efficiency	
SABRE (NaI-033) [9]	4.3	0.4	0.2	0.34	Crystal energy threshold	1 keV
					Veto energy threshold	50 keV
					Total active mass	35 - 50 kg
					Background rate (PoP)	$0.36 { m cpd/kg/keV} [11]$
ARC CENTRE OF EXCELLENCE FOR					Background rate (South)	0.72 cpd/kg/keV [12]

Same stringent crystal requirements for North (no LS veto) and South (with an LS veto).

], COSINE	[3],	and	ANAIS
10.8/2.			

Large (> 4 kg) Na(TI) Crystals background & mass

Crystal	^{nat} K (ppb)	²³⁸ U (ppt)	²¹⁰ Pb (mBq/kg)	²³² Th (ppt)	Active mass (kg
DAMA [1]	13	0.7-10	(5-30)x10 ⁻³	0.5-7.5	250
ANAIS [2]	31	<0.81	1.5	0.36	112
COSINE [3]	35.1	<0.12	1-1.7	<2.4	~60
SABRE [4]	4.3	0.4	0.49	0.2	~35+40=75 (total go
PICOLON [5]	<20	_	<5.7x10 ⁻³		~20 (goal)

[1] R. Bernabei et al., <u>NIMA 592(3) (2008)</u>

[2] J. Amare et al., EPIC 79 412(2019)

[3] P. Adhikari et al., <u>EPIC 78 490 (2018)</u>

[4] B. Suerfu et al., Phys. Rev. Research 2, 013223 (2020), Eur.Phys.J.C 81 (2021) 4, 299, Phys. Rev. D 104, 021302 (2021)

[5] K. Fushimi et al., PTEP 4 043F01 (2021)

Na(TI) Crystals: Zone Refining Purification

- Strategic and unique to the SABRE project is the idea to zone refine the powder prior to growth
- A zone refiner suitable for order of 100 kg crystal production has been built in collaboration with MELLEN
- The zone refiner is being moved to RMD for growing a test crystal by the end of the summer

Impurities are pushed to the end of the refining tube and removed from the ingot before the crystal growth. Reduction factors of

- ⁴⁰K: 10-100
- ⁸⁷Rb: 10-100
- ²¹⁰Pb: 2

Final crystal intrinsic background ~0.3 cpd/kg/keV

		In	npuri	ity con	centrat	ion (pp	b)
Isotope		Powder		Sample location (mm)			
		I Owuei	7 ± 7	325 ± 9	$492{\pm}10$	635 ± 20	783 ± 30
	$^{39}\mathrm{K}$	7.5	< 0.8	< 0.8	1	16	460
	$^{85}\mathrm{Rb}$	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.7
	208 Pb	1.0	0.4	0.4	< 0.4	0.5	0.5
	$^{65}\mathrm{Cu}$	7	<2	<2	<2	2	620
	$^{133}\mathrm{Cs}$	44	0.3	0.2	0.5	23.3	760
	138 Ba	9	0.1	0.2	1.4	19	330

B. Suerfu, Phys. Rev. Applied 16, 014060 (2021)

SABRE South Collaboration

SABRE south collaboration meeting at Stawell (Victoria)

SABRE South @ SUPL

- Muon System
 9.6 m² x 5 cm EJ200
 R13089 PMT x 16 @ 3.2 GS/s
- Passive shielding, Steel + HDPE
- Liquid Scintillator Veto System
 12k litres Linear Alkyl Benzene + PPO & Bis-MSB Stainless steel, non-thoriated welds, lumirror coating Oil-proof base R5912 PMT x 18 @ 500 MS/s
- DM Target Detector Nal(TI) Crystals, HPN2 flushed
 R11065 low radioactivity PMT x ~14 @ 500 MS/s

https://www.veritasium.com/videos/2022/6/2/the-absurd-search-for-dark-matter

SABRE South crystals modules

NaI(Tl) crystal

76 mm PMTs

LS System

 4π coverage:

•12 kL Liquid alkibenzene from JUNO doped with PPO and Bis-MSB

•Photon attenuation > 20m

- •238U/232Th<10⁻¹⁵ g/g, ⁴⁰K<10⁻¹⁷ g/g
- •18 204 mm PMTs (Hamamatsu R5912) oil proof
- 16 PMTs from Daya Bay for testing and possible integration in the LS Veto system.

Timeline

2023				2024	
Q1	Q2	Q3	Q4	Q1	Q2

Crystal production, transport, cool-down

Clean room, glove box

Veto tank prep.

Fluid handling manufacturing

Shielding stage 1

Clean spaces

- 2 Main facilities (Figures shown are from LNGS) with ISO-7 performance.
- Nal assembly clean room/tent
 - Clean room under muon parking frame
 - Assembly glove box.
 - Storage for materials
- Facility for characterisation necessary at SUPL. Shielded volume: lead with N2 or compressed air flushed box
- Veto Tent
 - Cover to prevent Radon plate-out in the vessel during lumirror, PMT, calibration system mounting
- For both Rn mitigation is our primary concern. We are discussing with SGM to use "compressed airline" delivering low Rn air from the surface for use in refuge chambers near SUPL.

First to go down: Muon System

- **Geometry:** 3m x 0.4m EJ200 x 8 modules. 2-PMT readout ToFtype system with ~5cm position resolution along detector.
- Veto for background directly above crystals (avoiding LAB), and for muon flux.

Stage 1: 2 layer configuration for μ flux vs. direction at SUPL (1025 m) **Ready for deployment in January 2024.**

Stage 2: SABRE *µ* Veto and muon flux modulation studies.

Muon flux

Surface

Underground, 3.0 km.w.e.

Other achievements

SABRE North status

- •3 x 3 matrix of \approx 5 kg NaI detectors (40 kg)
- •Inner 5 mm thick ultra pure Cu box
- •10-15 cm Cu and 80 cm PE shielding structure (~ 30t)
- •Predicted background from environmental gamma and neutrons ~0.01 dru in the ROI

SABRE Impact

- Crystal background from Nal-33
- Cosmogenic background ³H (half life 12.4 yrs)

SABRE South arXiv: 2205.13849

Sensitivity $\sim \sqrt{M/R_b}$,

Statistically significant results with 2-3 years of exposure

CELLAR

- Dilution refrigerator (10 mK base) in SUPL
- Another at Swinburne (30 mK base)
- Rare combination of deep underground lab and cryogenics
- Enable extremely low background research
- Research areas: quantum tech, gravitational waves, dark matter, etc
- Open-access facility for Australian researchers

Ultra-low-mass DM reaches

Optomechanical Dark Matter Direct Detection: ODIN

https://arxiv.org/pdf/2306.09726.pdf

FIG. 4. Projected 90% C.L. upper limits on the dark matternucleon cross-section at ODIN, $\sigma_{\chi n}$, assuming a run time of 100 days.

OTHER ACTIVITIES AT SUPL

Planned:

- •Ultra-low background Ge counting facility
- R&D facility for cryogenics dark matter detectors & TPC detector prototypes
- Geophysics

Woking on it:

- Low background radiation biophysics : Study the biological effects of very low background radiation.

• Extremeophile astrobiology – life in extreme environments (no oxygen, high T, high p)