Computing Resources Scrutiny Group Report

0

Pekka K. Sinervo, C.M., FRSC University of Toronto

For the Computing Resources Scrutiny Group

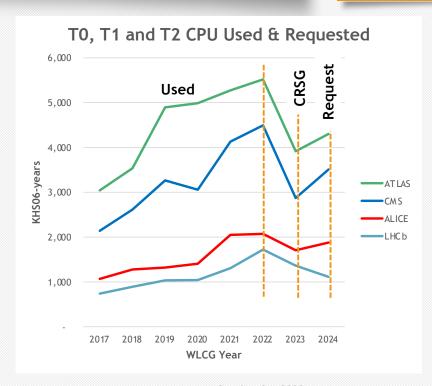
October 24, 2023

CERN-RRB-2023-115

Pekka Sinervo, C.M.

October 24, 2023

C-RSG Membership


- C-RSG thanks the experiment representatives and CERN management for their support.
- C-RSG also thanks A Valassi and H Meinhard for their support of the scrutiny group.

C Allton (UK)	J Hernandez (Spain)
E Fede (France)	J Kleist (Nordic countries)
M Schulz (CERN)	A Valassi (CERN, scient. secr.)
P Christakoglou (Netherlands)	P Sinervo (Canada)
A Connolly (USA)	D Elia (Italy)
T Mkrtchyan (Germany)	

Fall 2023 Scrutiny Process

- The collaborations gave updates on computing and data processing plans
 - Described computing activities for 2023 year
 - Updated computing plans for 2024 year
 - Initial resource estimates for 2025, based on LHC schedule
- Run 3 analysis and simulation production comprise bulk of computing activities
 - Using estimates of delivered integrated luminosity for 2024 and 2025
 - The computing requirements for 2023 met the needs of the experiments
 - Modified by shorter pp run and somewhat longer heavy-ion run
 - Uncertainties in running plans and WLCG computing resources being mitigated
- C-RSG believes that the 2025 estimates are a reasonable basis for further discussion and refinement

- Available resources for 2023 meet the needs
 - Especially given the change in running schedule
- Approved resources for 2024 are sufficient to support approved physics program
- Continued availability of opportunistic CPU utilization by all experiments
 - Use of HPC resources continue to rise
 - That may be changing as some of the HPC resources are incorporated into pledges
- Note: new CPU benchmark (HEPSPEC-06 -> HEPSCORE-23)

ALICE Preliminary Estimates for 2025

		20	23		2024		2	025
Al	ALICE		Pledged	Request	2024 req. / 2023 C-RSG	C-RSG recomm.	Prelim Request	2025 req. / 2024 C-RSG
	Tier-0	541	541	600	111%	600	690	115%
	Tier-1	572	506	630	110%	630	725	115%
CDLI	Tier-2	592	567	650	110%	650	750	115%
CPU	HLT	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Total	1705	1614	1880	110%	1880	2165	115%
	Others							
	Tier-0	58.5	58.5	67.5	115%	67.5	78.5	116%
	Tier-1	63.5	57.6	82.5	130%	71.5	82.5	115%
Disk	Tier-2	57.5	60.4	77.5	135%	66.5	77.5	117%
	Total	179.5	176.5	238.5	133%	205.5	238.5	116%
	Others							
	Tier-0	131.0	131.0	181.0	138%	181.0	226.0	125%
Tono	Tier-1	82.0	87.7	107.0	130%	107.0	135.0	126%
Tape	Total	213.0	218.7	288.0	135%	288.0	361.0	125%
	Others							

- 2024 and 2025 priorities
 - Extended PbPb and pPb runs
 - Two possible scenarios for pPb and PbPb running – comparable CPU requirements
 - Improving calibration procedures and data compression
 - 2025 reflects expected growth
 - Δ CPU = 15%
 - Δ Disk = +16%
 - Δ Tape = +25%
 - Growth driven by pp and PbPb running

ATLAS Preliminary Estimates for 2025

	ATLAS		23		2024		20	025
AT			Pledged	Request	2024 req. / 2023 C-RSG	C-RSG recomm.	Prelim Request	2025 req. / 2024 C-RSG
	Tier-0	740	740	936	126%	936	1100	118%
	Tier-1	1430	1520	1516	106%	1516	1661	110%
CPU	Tier-2	1747	1841	1852	106%	1852	2030	110%
CPU	HLT	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Total	3917	4101	4304	110%	4304	4791	111%
	Others		<u>.</u>					
	Tier-0	40.0	40.0	49.0	123%	49.0	56.0	114%
Disk	Tier-1	136.0	150.5	163.0	120%	163.0	186.0	114%
DISK	Tier-2	168.0	160.0	200.0	119%	200.0	227.0	114%
	Total	344.0	350.5	412.0	120%	412.0	469.0	114%
	Tier-0	174.0	174.0	207.0	119%	207.0	264.0	128%
Tape	Tier-1	353.0	360.3	452.0	128%	452.0	567.0	125%
	Total	527.0	534.3	659.0	125%	659.0	831.0	126%

- 2024 and 2025 activities
 - Increase in use of smaller data formats
 - Raw event size increased by 20%
 - Anticipating greater use of HPC
 (NB: not all workflows run efficiently or at all on HPCs)
- 2025 estimates reflect full year of running
 - Δ CPU = +11%
 - Δ Disk = +14%
 - Δ Tape = +26%
- Smaller increases than previous years reflect increasing use of fast simulation

CMS Preliminary Estimates for 2025

			23		2024		2	025
CMS		C-RSG recomm.	Pledged	Request	2024 req. / 2023 C-RSG	C-RSG recomm.	Prelim Request	2025 req. / 2024 C-RSG
	Tier-0	720	720	980	136%	980	1180	120%
	Tier-1	800	916	930	116%	930	1100	118%
CPU	Tier-2	1350	1313	1600	119%	1600	1900	119%
CPU	HLT	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Total	2870	2949	3510	122%	3510	4180	119%
	Others							
	Tier-0	45.0	45.0	54.0	120%	54.0	64.0	119%
Disk	Tier-1	98.0	96.8	122.0	124%	122.0	142.0	116%
DISK	Tier-2	117.0	109.7	149.0	127%	149.0	175.0	117%
	Total	260.0	251.5	325.0	125%	325.0	381.0	117%
	Tier-0	228.0	228.0	320.0	140%	320.0	420.0	131%
Tape	Tier-1	316.0	303.7	380.0	120%	380.0	452.0	119%
	Total	544.0	531.7	700.0	129%	700.0	872.0	125%

- 2024 and 2025 activities focus on Run 3 and HL-LHC preparations
 - Run 3 data reprocessing
 - MC for Run 3 and HL-LHC
- 2025 estimates based on full year of running
 - $\Delta CPU = +19\%$
 - Δ Disk = +17%
 - Δ Tape = +25%

LHCb Preliminary Estimates for 2025

)23		2024		2	025
LHCb		C-RSG recomm.	Pledged	Request	2024 req. / 2023 C-RSG	C-RSG recomm.	Prelim Request	2025 req. / 2024 C-RSG
	Tier-0	215	215	174	81%	174	283	163%
	Tier-1	707	598	572	81%	572	928	162%
CPU	Tier-2	391	434	319	82%	319	518	162%
CPU	HLT	50	50	50	100%	50	50	n/a
	Total	1363	1297	1115	82%	1115	1779	160%
	Others			50			50	
	Tier-0	30.3	30.3	30.6	101%	30.6	49.2	161%
Diele	Tier-1	60.5	54.7	61.2	101%	61.2	98.5	161%
Disk	Tier-2	11.6	7.9	11.8	102%	11.8	19.0	161%
	Total	102.4	92.9	103.6	101%	103.6	166.7	161%
	Tier-0	91.0	91.0	117.1	129%	117.1	189.3	162%
Tape	Tier-1	157.0	133.7	133.3	85%	133.3	208.1	156%
	Total	248.0	224.7	250.4	101%	250.4	397.4	159%

- 2024 and 2025 priorities
 - Full year of data taking with complete detector
 - First full year with new computing model
 - But available resources below 2023 pledges
 - 2025 request reflects expected increase (shifted by 1 year)
 - $\Delta CPU = +60\%$
 - Δ Disk = +61%
 - Δ Tape =+59%
- Important that LHCb is provided these resources

Summary of Preliminary Estimates for 2025

- Based on a full year of data-taking in 2025
- The preliminary estimates of data processing needs appear reasonable
 - Last year of Run 3 data collection, with continued MC production and analysis
 - Continuing work to optimize use of resources
 - Compact data formats having increasingly beneficial effect
 - Continued increased use of HPC opportunistic resources
- Contingency planning in the event of significant reduction in computing resources appears robust
 - Work to mitigate uncertainties in T1 resources appears satisfactory

ALICE Observations and Recommendations

- ALICE-1 The C-RSG requests that when different run scenarios are planned, ALICE Collaboration provide a high-level summary of the total amount of disk, tape and CPU for each run scenario. This will allow the C-RSG to better understand the potential resource requirements...
- ALICE-2 When new processing, calibration or MC generation campaigns are undertaken by ALICE, the C-RSG requests that the ALICE Collaboration provide an assessment of the associated CPU, disk and tape requirements...
- ALICE-3 The C-RSG requests that for the next scrutiny report the ALICE Collaboration provide an estimate of the contingency it holds....

ATLAS & CMS Observations and Recommendations

- ATLAS-1 The C-RSG recommends that ATLAS continue increasing the adoption and usage monitoring of the more compact DAOD_PHYS and DAOD_PHYSLITE data formats for its physics data analyses.
- ATLAS-2 The C-RSG is concerned by the 20% increase in RAW data event size. It encourages the ATLAS Collaboration to explore strategies to mitigate...
- CMS-1 The C-RSG requests that the CMS Collaboration continue reporting on efforts to pinpoint & reduce the causes for the CPU efficiency.
- CMS-2 The C-RSG recommends that CMS continue increasing the adoption and usage monitoring of the more compact NanoAOD data format for its physics data analyses.

LHCb Observations and Recommendations

- LHCb-1 Considering that the CPU requirements are dominated by MC simulation for Run 3 data, the C-RSG encourages the LHCb Collaboration to explore strategies to reduce the simulation CPU footprint.
- LHCb-2 A significant contributor to the CPU budget is user analysis. The C-RSG encourages the LHCb Collaboration to increase the utilization of the centrally managed analysis production system that has been shown to improve CPU efficiency.
- LHCb-3 The physics data taken in 2023 during the pp and HI runs increase the storage requirements for 2025. These storage requests will need to be re-evaluated in the next scrutiny round in light of the actual physics data collected during 2023.

Collaborations have been very responsive

- The collaborations have been very responsive to previous recommendations and requests for additional information
 - Enabled in-depth and informed discussions of computing challenges
 - Some of the responses such as CMS analysis of CPU efficiency are very detailed and helpful
 - Deeply appreciated by scrutiny group
- C-RSG notes that all collaborations have been using resources efficiently
 - Observations and recommendations in report are made to support that effort

Summary

- C-RSG thanks the collaborations for their collegial engagement
- Collaborations efficiently using the 2023 computing resources
- The pledged 2024 resources are essential to pursue approved physics program
- The 2025 preliminary estimates appear robust, and will be refined over next 6 months