

New Hardware Acquisition for Physics DB Services in 2011

Tier1 Service Coordination Meeting
March 17th, 2011
Luca Canali, IT-DB

Background

- Replacement of 2/3 of HW for production Physics Databases in IT
 - RAC5 and RAC6
 - H/W originally deployed in 2008
- H/W selection: desire to have a unified H/W base in IT-DB

Requirements

- Sizing for 2012-2015
 - Based on current production and growth
 - No new major service deployment requested
- Storage Capacity
 - 5-30 TB per DB, ~150TB overall estimated need
- IO Capacity
 - Random reads are the most critical
 - 10K IOPS at peak time
 - Sequential reads important too
 - ~500 MB/s reads
 - Sequential Writes less important
 - ~200 MB/s sequential write

Concentrate on NAS here

- More significant development since previous h/w acquisition
 - SAN technology is "more of the same" with newer disks; no need for 8Gb Fiber Channel.
- Proven record of stability
- Performance
 - 10 GigE connectivity
 - SSD cache to boost IOPS
- Capacity: allow large DBs with SATA disks
- Snapshots
 - 'Filesystem Snapshots' to be used as backup against logical corruption
- Cost /IOPS and cost/GB has gone down

NAS and PDB requirements

Sizing criteria

- Match measured production workload metrics with benchmark on HW characteristics
- Additional evaluation based on DBAs experience
 - With storage and DB applications behaviour
 - Additional tests performed with experiments (CMS and ATLAS)
- Additional considerations
 - Response time for random IO served by NetApp SSD cache reduced 1 order magnitude
 - Achieved 40K IOPS in testing
 - Otherwise IOPSs scale with N# disks both for SAN and NAS (~100 IOPS per SATA disk)

Where do we lose

- Sequential IO with NAS
 - In particular write throughput limited by RAID DP
 - But limits are above requirements for our production DBs
- Cost: 20% more expensive
 - Total cost, including switches and servers

NAS additional advantages

Improved Reliability

- Clustered controllers
- Mature OS and file system

No Fiber Channel

- No upgrade to 8Gbps
- No need for FC support

Further leverage on common procedures, e.g.
 Installation and monitoring

Sizing the replacement of RAC5+6

- Enough HW to run critical production that is currently on RAC5+6+7
 - Will allow to increase performance with new HW
 - Will allow move to new HW using standby DB failover
 - Will allow migration out of RAC7 in 2013
 - RAC7 will still be used for 'low load' DBs in his last year of life
 - Results of the running of replacement of RAC5+6 can be used to size the replacement of RAC7

Replacement of RAC5+6 with NetApp storage - proposal

Department

- 2 setups
 - Each with 3 clusters of NetApp FAS3240
 - 6 disk shelves (of 24 disks) per cluster
 - Each controller 512GB SSD (PAM module)
 - Total: 864 disks (1TB SATA)
- In particular for 8 main prod DBs:
 - Proposed to be moved to 4x cluster
 - Isolated cluster to provide isolation
 - 144 disks per cluster -> total of 576 disks on NAS
 - currently on 1004 disks

Servers

- Evolution from current production
- In particular add more memory (48 GB)
 - Beneficial for random IOPS
- Take advantage of 10GigE
 - For storage access
 - For faster backup and restore (10Gig TSM)
- CPUs
 - Move to Westmere
 - 2xquad cores with higher frequency
- 2 setups of 24 Servers

Conclusions and Plan

- Buy NetApp based storage and new servers for Physics DB Services in 2011
 - Tier1s or online DBs will continue to have IT-DB support on SAN
 - RAC7, standby and integration on RAC9 will stay on SAN+ASM
- Next steps
 - Configure and order h/w (storage and servers)
 - Prepare installation plan with CF
 - Integrate H/W migration plan with 11.2 upgrade
 - Testing and planning activity in 2011
 - Changes to be performed during technical stop

