

29 November 2023 to 1 December 2023 CERN Europe/Zurich timezone

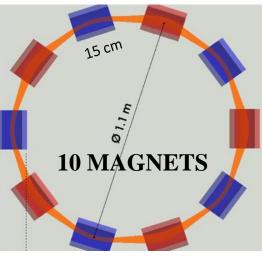
Status of the HIE-ISOLDE Superconducting Recoil Separator (LOI-INTC-I-228)

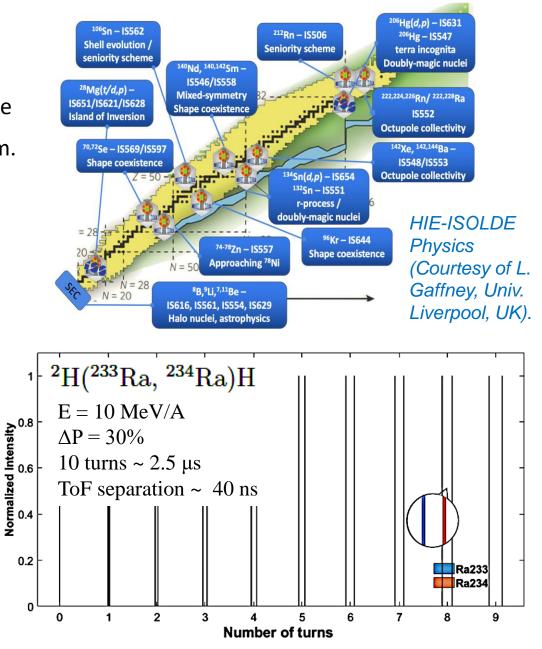
2023

ISOLDE Workshop and Users meeting

Ismael Martel¹, Olof Tengblad², Joakim Cederkall³

¹ University of Huelva, Spain ² Instituto de Estructura de la Materia, CSIC, Madrid, Spain ³ Lund University, Sweden




ISOLDE Superconducting Recoil Separator

ISRS: a novel recoil separator for HIE-ISOLDE

- ✓ Particle storage ring
- ✓ Nested multifunction superconducting magnets: quad + dipole
- ✓ FFAG (Fixed Field Alternating Gradient) beam transport system.
- $\checkmark\,$ Reaction fragments separated according to A/Q
- ✓ RF system for injection/extraction
- ✓ Focal plane detector: ToF, energy, charge (Z).
- ✓ Solenoids: Racetrack type or Canted Cosine Theta (CCT)
- ✓ Cooling: Hybrid LHe/cryocoolers/recondensing

C. Bontoiu, J. Resta, V. Rodin, I. Martel, C. Welsch, NIMA 969 (2020)164048

Status of the LOI-INTC-I-228

SHORT HISTORY

- 2019: ISRS concept presented at 84th Meeting of the ISCC.
- 2020: First paper, C. Bontoiu et al., Nucl. Ins. Meth. A 969
- 2021: Letter of Intent for design study was approved INTC-I-2283 (I. Martel, O. Tengblad, J. Cederkall)

The mission of the ISRS Collaboration (L	OI INTC-I-2283), is		
<i>"commit the resources needed to proceed with a Proof-of-Concept st programs."</i>	udy and participate	in national and	l EU funding
Activities:	Mini	mum ISRS requ	irements
 Participation in EU calls and national funding programs. 	Parameters		Values
✓ Regular meetings (once/twice a year).	Momentum	acceptance	±10%
✓ Physics Cases	Resolving p	bower $p/\Delta p$	2000
✓ Technical specs., Beam Dynamics, Multi-harmonic Buncher.	Angular acc	ceptance	±10°
\checkmark development of FUSILLO prototype -> 90° CCT solenoid with	Angular res	olution	0.1°
dipole function in collaboration with CERN.	Solid angle		100 msr
	Charge reso	olution $\Delta Q/Q$	1/70 (FWHM)
 Conferences/Publications. 	Mass resolu	ation $\Delta M/M$ 1	/250 (FWHM)

Rotation

 $0 - 70^{\circ}$

✓ Close contact HT companies for possible developments.

Status of the LOI-INTC-I-228

- December 2021: Spanish Gov. grants 6M€ to Spanish Institutions for R&D activities of CERN experiments.
- July 2023: R&D Project coordinated by CIEMAT.
- Subproject ISRS ("ISRS-SPAIN"): contribution of Spanish groups to the ISRS LOI. Budget 3M€.
- December 2025: budget deadline.

Participants

- ✓ University of Huelva, PI: I. Martel, Coordinator
- ✓ University of Valencia, PI: J. Resta
- ✓ IEM, CSIC, Madrid, PI: T. Kurtukian-Nieto, **Dep.-Coord.**
- ✓ Consorcio ESS-Bilbao (ESSB), PI: I. Bustinduy

Four technical work packages

- ✓ WP0: Coordination and Communication (not in LOI)
- ✓ Technical WPs: WP1, WP2, WP3.
- ✓ WPs/Tasks: Led by the Spanish institution receiving the funds.

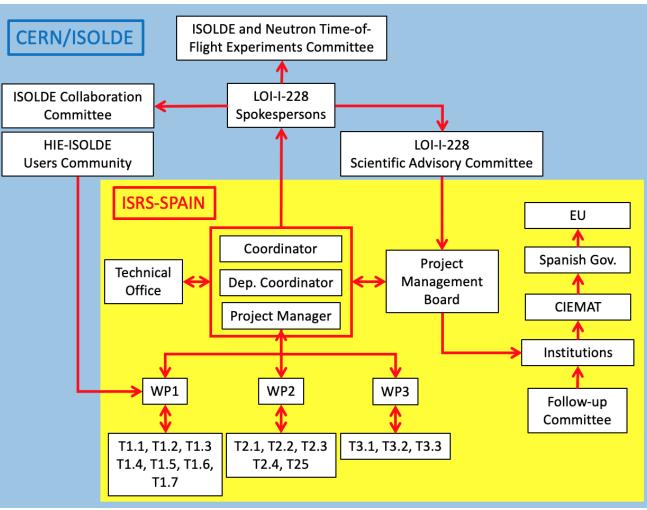
WP/TASK		LEADER					
WP1: STUDY OF BEAM DYNAMICS, IN EXTRACTION	ND	UV					
T1.1. Selection of Physics cases	ses	UHU					
T1.2. Nuclear reaction calculation	BD	UHU					
T1.3. Study of beam dynamics			T TT Z				
T1.4 Selection of configuration		Bean	n dynamics				
T1.5. Study of Injection/Extraction		to	optimize				
T1.6. Study of prototype of non-interceptive l	oeam diagnosti	confi	guration &				
T1.7. High order corrections to beam dynamic	op	peration					
WP2: CCT SOLENOIDS AND CRYOSTA		UHU					
T2.1. Prototype of solenoid							
T2.2. Prototype of solenoid with cryostat (MA							
T2.3. Study of elements of the magnetic field	ÿ						
T2.4. MAGDEM focussing system		Те	chnology nonstrators				
T2.5. Prototypes of critical elements of focal	plane						
WP3: MULTI-HARMONIC BUNCHER							
T3.1. Revision of critical designs							
T3.2. Test acceptance of manufactured protog	pes						
T3.3. Prototype of multiharmonic buncher		LOOD					

WP0. COORDINATION AND COMMUNICATION

Leader: University of Huelva **Objectives:**

- ✓ Project governance, management, coordination
- ✓ Quality assurance and risk management
- $\checkmark\,$ Communication and IPR

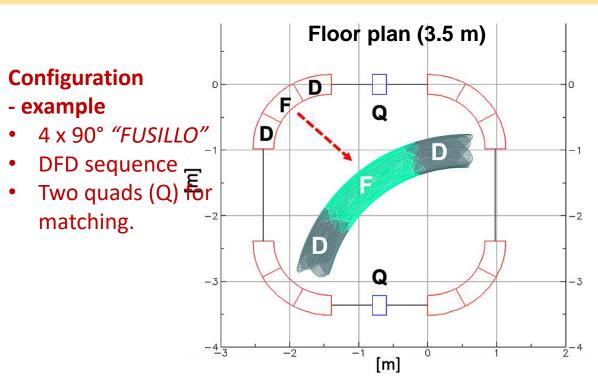
Spokespersons


- I. Martel, U. Huelva, Spain. O. Tengblad, IEM-CSIC, Madrid.
- Codorkall II Lund Swodon
- J. Cederkall, U. Lund, Sweden.

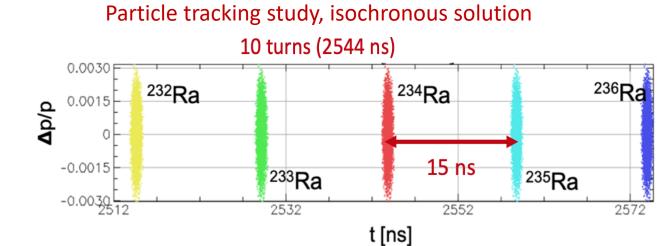
Scientific Advisory Committee: Monitor and review status of LOI activities

- ISOLDE Collaboration spokesperson; J. S. Freeman
- ISOLDE Technical group; J. A. Rodríguez
- ISOLDE Users community; G. de Angelis, INFN, Italy
- External experts; P. Delahaye, GANIL, France

MANAGEMENT STRUCTURE: CERN/ISOLDE <--> ISRS-SPAIN

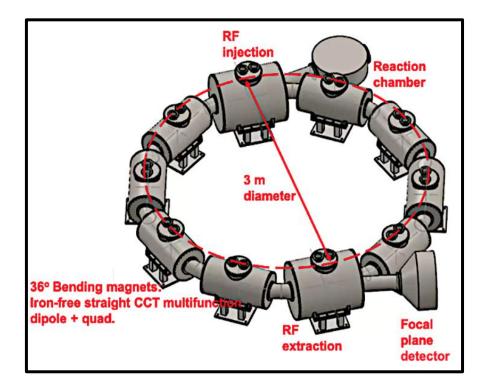


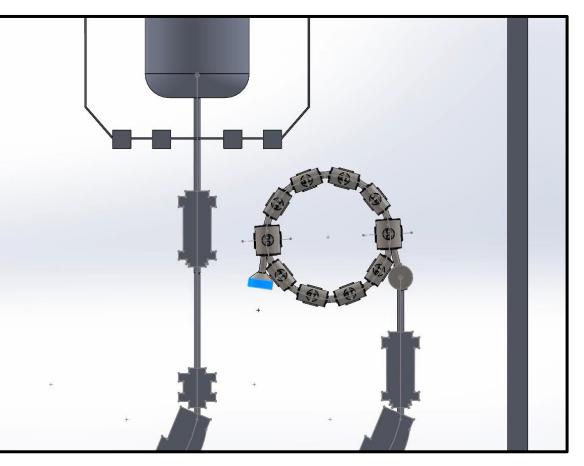
WP1. Study of beam dynamics, injection and extraction


Leader: University of Valencia **Objectives:** Beam dynamics studies to optimize the layout and performance of the ISRS ring.

Selection of physics cases -> Nuclear reaction calculations -> Study of beam dynamics -> Selection of configuration/operation

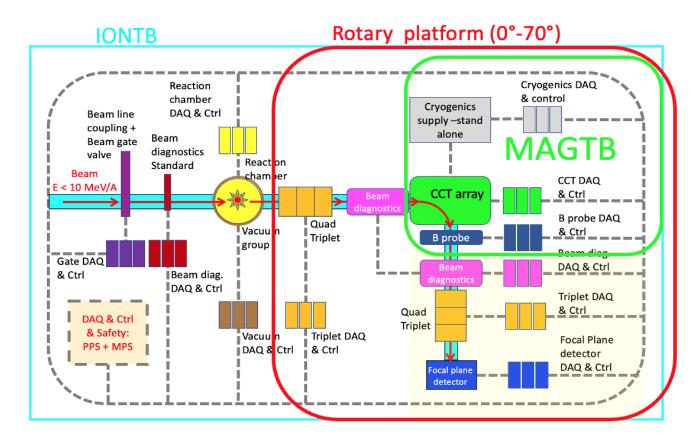
- ✓ Injection/Extraction
- ✓ Non-interceptive beam diagnostics
- $\checkmark\,$ Corrections to beam dynamics


<text>

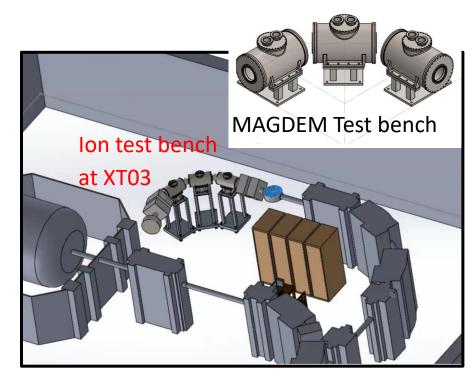

WP1. Study of beam dynamics, injection and extraction

Configuration - example

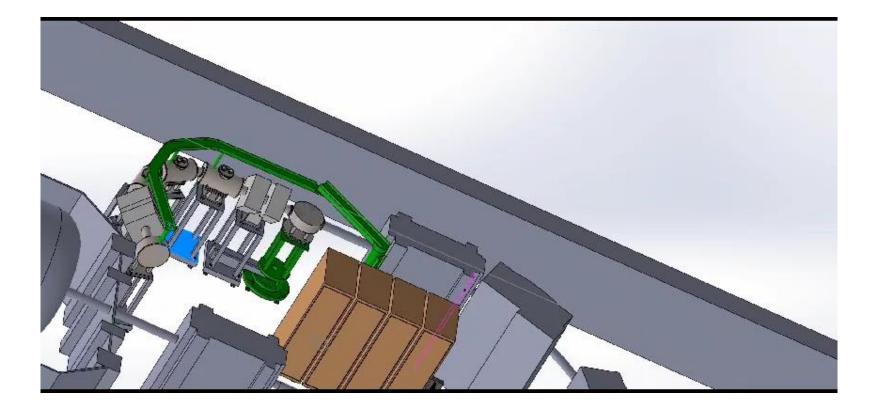
- 8 x straight CCTs
- 2 x SuShi type injection/extraction



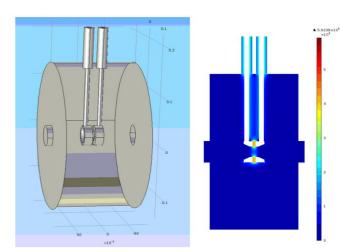
Integration study at XT03

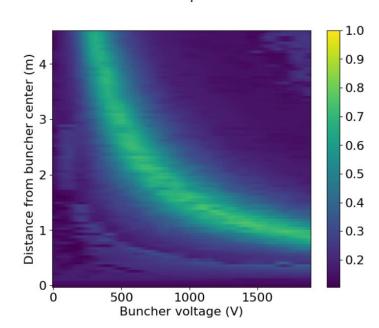


WP2. CCT SOLENOIDS AND CRYOSTATS


Leader: University of Huelva Objectives: Study technical challenges in the construction and operation of the ISRS spectrometer. Prototypes of critical elements.

- ✓ MAGDEM: Straight CCT magnet with dipole and quad functions, for ion beam circulation.
- ✓ 3D magnetic field scanner.
- ✓ Focal plane detector
- ✓ MAGDEM Test bench
- ✓ Ion test bench: Test concepts with ion beams
 - o Linear spectrometer


ION TEST BENCH at XT03


WP3. MULTI-HARMONIC BUNCHER

Objectives:

- Design and build prototype of multi-harmonic bucher for the operation of ISRS at HIE-ISOLDE.
 - ✓ low energy dispersion (< 1%)
 - ✓ high transmission (> 95%)
 - $\checkmark\,$ reduced space for bunch formation (< 5 m).
- RF power signal generation
- Test at ESS-Bilbao injector

EM model of the MHB with wedge electrodes. Frequency 10.128 MHz

Bunching efficiency as a function of distance and electrode voltage.

	ESS-BILBAO INJECTOR
RF Frequency	10.128 MHz
Macro-Pulse	1-50 Hz, 50 - 3000 µs
Beam Energy	5-45 keV/q
Ion Species	H+ / He+ / N+
Beam Current	0.1-40 mA
Vacuum Flange Interface	DN63CF
Maximum longitudinal space	4.0 m

ESSB plasma ion source

SUMMARY AND CONCLUSSIONS

- Funding from Spanish Gov. for R&D activities received. Deadline December 2025.
- Spanish Institutes: Univ. Huelva, Univ. Valencia, IEM/CSIC Madrid, ESS-Bilbao
- R&D covers the main activities of the LOI: beam dynamics, injection/extraction, beam diagnostics, CCT magnets, focal plane detector, beam diagnostics, multi-harmonic buncher.
- ISRS Spain focus on straight CCT magnets, complementary to curved magnets (CERN-FUSILLO).

Inst. de Física, UNAM, **México.** Univ. Huelva, **Spain.** IJCLab-Univ. Paris-Sud, **France.** Dpt. of Physics, Univ. Liverpool, **UK**. Wigner Research Centre for Physics, Budapest, **Hungary**. Inst. de Estructura de la Materia, CSIC, Madrid, **Spain**. ESS-BILBAO, Bilbao, **Spain.** Univ. Surrey, **UK.**

ISRS COLLABORATION

CERN, Geneva, Switzerland. Lund University, Sweden. Götenborg University, Sweden. Univ. Edinburgh, UK. LNL INFN, Italy Uppsala Univ., Sweden. Aarhus Univ., Denmark. Chalmers Univ. of Technology, Sweden. CENGB, Gradignan, France. Univ. York, UK.

Univ. of West Scotland, UK. ICMUV-Univ. de Valencia, Spain. The Cockcroft Institute, UK. Astroparticule et Cosmologie-Univ. Paris Diderot, France. Univ. Jyvaskyla, Finland. IMIS Univ. Riyadh, Saudi Arabia. IFIN-HH, Bucharest, Romania. Politecnico di Milano-DEIB & INFN, Italy. HIL-Warsaw University, Poland.

Plan de Recuperación, Transformación y Resiliencia

Financiado por la Unión Europea NextGenerationEU

PROJECT IMPLEMENTATION SCHEDULE (draft)

					2023 2024												2025															
				Jul	lul Aug Sept Oct Nov Dec Jan Feb Ma									Feb Mar Ap May Jun Jul Aug Sept Oct Nov Dec								; Jan Feb Mar Ap May Jun Ju							Jul Aug Sept Oct			Dec
		WP/TASK LEADER	COLLAB.	М1	M2	мз	M4	M5	M6	M7	M8	м9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20 M2	1 M22	M23	M24	M25	M26	M27	M28	M29	M30
WPO.	COORDINATION AND COMMUNICATION	UHU	ALL MEMBERS						ML1 D1	ML2 D2	ML4 TR1	ML3 ML5	D3 D4/D5	ML2	ML1		TR2	ML2			ML1	ML2	TR3		ML2	ML1		TR4	ML2			ML1/ML2 TR5(y26)
WP1.	STUDY OF BEAM DYNAMICS, INJECTION AND EXTRACTION SYSTEMS	UV	UHU, IEM/CSIC																													
T1.1.	Selection of Physics cases	UHU							ML1		D1				ML2		D2				ML3		D3									
T1.2.	Nuclear reaction calculation	UHU	IEM/CSIC			ML1											ML2		D1				ML3	D2								
T1.3.	Study of beam dynamics	UV						D1													ML1 D2/D3											
1.3.1.	Design specification	UV																														
1.3.2.	Selection of machine layouts and lattices	UV																														
1.3.3.	Ringsimulations	UV																														
1.3.4.	Error calculation and tolerance levels	UV																														
T1.4.	Selection of configuration	UV																			ML1 D1											
T1.5.	Study of Injection/Extraction	UV																								ML1 D1						
1.5.1.	Injection/extraction specifications	UV																														
1.5.2.	Injection/extraction simulations	UV																														
1.5.3.	Beam detectors	UV																														
T1.6.	Study of prototype of non-interceptive beam diagnostics	UV	UHU																											ML1 D1		
T1.7.	High order corrections to beam dynamics	CSIC	UV										ML1								ML2											D1
WP2.	CCT SOLENOIDS AND CRYOSTATS	UHU																														
T2.1.	Prototype of solenoid	UHU	SUBCO	ML1						ML2	D1																					
T2.2.	Prototype of solenoid with cryostat (MAGDEM)	UHU	SUBCO	ML1						ML2	ML3 D1/D2		ML4		ML8 D3				ML5		ML6							ML7 D4	ML9 D5			
T2.3.	MAGDEM focussing system	CSIC															ML1 D1				ML2 D2											ML3 D3
T2.4.	Study of magnetic field measurement system elements	UHU				ML1			ML2						ML3/ML4 D1/D2						ML5 D3											
T2.5.	Prototypes of critical elements of focal plane	CSIC																			ML1 D1											ML2 D2
WP3.	MULTI-HARMONIC BUNCHER	ESSB																			ML1 D1											ML2 D2/D3
T3.1.	Revision of critical designs	ESSB																														
T3.2.	Test acceptance of manufactured protoypes	ESSB																														
T3.3.	Prototype of multiharmonic buncher	ESSB																														